
A branch-and-cut algorithm for

the Multi-Vehicle Traveling Purchaser Problem with

Exclusionary Side Constraints

Daniele Manerba, Renata Mansini

Department of Information Engineering, University of Brescia, Italy

Operations Research Group

Technical Report No. 02, September 2013

Abstract

We introduce a problem where a fleet of vehicles is available to visit suppliers offer-

ing various products at different prices and quantities, with the aim to select a subset

of suppliers so to satisfy products demand at the minimum traveling and purchasing

costs. Vehicles have a predefined capacity and products can be incompatible so that

their load on the same vehicle is forbidden. We call this problem the Multi-Vehicle

Traveling Purchaser Problem with Exclusionary Side Constraints. We show how a

three-index one-commodity flow formulation for the problem may be easy to imple-

ment with a common MILP solver, but highly non efficient when solving large size

instances. We concentrate on a formulation using connectivity constraints to exclude

subtours and introduce a branch-and-cut framework using a preprocessing routine and

the separation of different valid inequalities. We also introduce a four-step heuristic

based on the solution of different subproblems and used it to provide a initial feasible

solution. A streamlined version of the proposed exact method tested on a large set

of instances with up to 50 suppliers, 100 products and 20% of crossed incompatibility

between products largely outperforms the plain resolution by the commercial solver

Cplex 12.3. Also the heuristic approach comes out to be quite effective and extremely

efficient.

Keywords: Traveling Purchaser Problem; Multi-vehicle; Exclusionary Side Constraints;

branch-and-cut.

1

1 Introduction

Consider a depot 0, a set of suppliers (dispersed in a geographical area around the depot)

M := {1, . . . ,m} and a set of products K := {1, . . . , n}. An integer positive demand dk is

associated to each product k ∈ K, that can be purchased in a subset Mk ⊆ M of suppliers

at a non-negative price pik, potentially different for each supplier i ∈ Mk. For each product

k ∈ K, a quantity qik is offered by supplier i ∈Mk, such that
∑

i∈Mk
qik ≥ dk. Let G = (V,E)

be a complete graph where V := {0}∪M is the vertex set and E is the edge set. For each edge

e ∈ E, the traveling cost ce is calculated as Euclidean distance. The well-known Traveling

Purchaser Problem (TPP) looks for a cycle in G starting at and ending to the depot 0, and

visiting a subset of suppliers so to exactly satisfy products demand, while minimizing both

traveling and purchasing costs. Following the well-established literature we will refer to the

special case of the problem with unlimited supplies, i.e. qik ≥ dk for all k ∈ K and i ∈ Mk,

as the unrestricted TPP, and to the more general case as restricted (or capacitated) TPP.

Notice that the unrestricted case is equivalent to assuming that dk = 1 and qik = 1 for all

k ∈ K and i ∈Mk.

The TPP was introduced in relation with job scheduling by Burstall [7], but since it has

been presented in a routing context by Ramesh [22], the problem has gained a lot of attention

in the specialized literature. There are several motivations behind the study of this problem.

First of all, the TPP arises in many practical procurement contexts where the decision

maker has to deal simultaneously with the suppliers selection, the purchasing decisions at

the suppliers, and the routing optimization. Secondly, the problem is proved to be NP-hard

and quite challenging to face in practice too, because of its complex combinatorial structure

(see Laporte et al. [17]). Hence, especially in the last decade, both exact and heuristic

methods have been proposed for the problem and its variants either in deterministic or in

dynamic and stochastic contexts (see Mansini and Tocchella [19] for the TPP with budget

constraint, Angelelli et al. [2] and Angelelli et al. [3] for a dynamic version with quantities

decreasing over time, Angelelli et al. [4] for a time-dependent stochastic variant, Beraldi

et al. [5] for the TPP under uncertainty, and Gouveia et al. [14] for the TPP with additional

side-constraints).

Aside the basic version of the TPP, real and large-size procurement settings need to

account for at least two more aspects to be correctly modeled. Both of them are related to

the presence of real constraints. The first aspect concerns loading capacities or maximum

service times. In practice, the problem optimization has to be done considering a fleet of

vehicles and not just a single vehicle. Few contributions can be found in the literature about

the multi-vehicle version of the TPP. In Choi and Lee [9] the authors introduce a reliability

optimization problem as variant of the multi-vehicle TPP. In Riera-Ledesma and Salazar-

Gonzàlez [23] the authors analyze the generalization of the asymmetric unrestricted TPP to

2

the multiple vehicle case with capacity constraint. The problem is described as a location

routing problem in the context of school bus routing. The authors propose a model based on

a single commodity flow formulation and provide valid inequalities to be used in a branch-

and-cut algorithm tested on a large set of randomly generated instances. Very recently, the

same authors propose a branch-and-cut-and-price approach to address a generalization of

the problem taking into account bounds not only on the loading capacity but also on other

resources (Riera-Ledesma and Salazar-Gonzàlez [24]). Finally, in Bianchessi et al. [6] the

authors present different mathematical programming formulations for a distance constrained

variant of the multi vehicle TPP and propose a branch-and-price algorithm to solve a set

partitioning formulation where columns represent feasible routes for the vehicles.

The second aspect is related to the possibility that two or more products are incompati-

ble, that is they could not be loaded on the same vehicle. Examples of incompatible products

can be found in different real contexts: food goods cannot be mixed with chemicals, sub-

stances with hazardous properties may become unstable if mixed with other products and so

on. Incompatibility constraints are usually treated in three different ways. The first solution

implies the use of heterogeneous, so called dedicated vehicles. This trivially leads, if a lot

of incompatibilities exist among products, to the need of an enormous fleet size and conse-

quently to a great waste of resources and money. As an alternative the vehicles can make use

of some separation devices. In literature the problem is known as multi-compartment vehicle

routing problem: each customer may order several products, the vehicles are identical and

have several compartments, and each compartment being dedicated to one product. The

demand of each customer for a product must be entirely delivered by one single vehicle. In-

terest readers are referred to Fallahi et al. [11], Muyldermans and Pang [21] and to Mendoza

et al. [20] for a stochastic variant. Vehicle routing problems with multi-compartment loading

are also analyzed in the survey by Iori and Martello [16]. Finally, the last way to deal with

products incompatibility is to optimize the vehicles routes avoiding to load incompatible

products on the same vehicle. At this aim the so-called exclusionary side constraints are

added to the problem formulation. In the literature different contributions can be found on

the application of exclusionary side constraints to other problems (see for instance Goossens

and Spieksma [13] and Cao and Uebe [8] for the Transportation Problem).

In this paper we generalize the restricted TPP by considering a fleet instead of a single

vehicle (multi-vehicle variant) and by dealing with products that may be incompatibile

(exclusionary side constraints). We call the problem the Multi Vehicle Traveling Purchaser

Problem with Exclusionary Side Constraints (MVTPP-ESC). To define this generalization

we need for additional notation with respect to the basic TPP. Let us consider a set F :=

{1, ..., u} of homogeneous vehicles with equal capacity Q. Moreover let B := {(k, g) : k, g ∈
K} be the set of pairs of products that cannot be shipped on the same vehicle simultaneously,

3

i.e. the set of exclusionary side constraints. The MVTPP-ESC aims at determining a

simple cycle for each vehicle v ∈ F passing through the depot and visiting a subset of

suppliers so that the total demand is satisfied at minimum purchasing and traveling cost,

while guaranteeing all exclusionary constraints and without exceeding vehicles capacity. It

is easy to see that the MVTPP-ESC is an NP-hard problem reducing to the TPP when

B = ∅, |F | = 1 and Q ≥
∑

k∈K dk. In order to satisfy incompatibilities the problem allows

multiple visits to the same supplier. This aspect characterizes also the routing problems

with split deliveries (see Dror and Trudeau [10]). However, while in the latter problem the

split induces a traveling costs reduction in our case the split may cause a costs increase

being forced by the exclusionary side constraints (see Example 1 where the introduction of

products incompatibility doubles the traveling costs).

Example 1 Let us consider 2 incompatible products, A and B, a depot 0 and 4 suppliers

offering a single unit for each product. The demand for each product is 4, and the capacity

of each vehicle is 2. The graph and the routing cost for each edge are shown in Figure 1.

If we remove incompatibility between A and B the optimal solution is represented by four

direct visits to the suppliers, as shown in Figure 1(a), where A and B are loaded on the same

vehicle with a total traveling cost equal to 8. On the contrary, for the MVTPP-ESC, the

optimal solution is represented by four tours (two for product A and two for product B) with

a total traveling cost equal to 16. The two optimal tours for collecting A (and equivalently

for collecting B) are highlighted in bold in Figure 1(b).

(a) MVTPP solution (b) MVTPP-ESC solution

Figure 1: Difference between MVTPP and MVTPP-ESC

The rest of the paper is organized as follows. In Section 2 we introduce two mathemat-

ical models for the problem, a three-index single-commodity flow formulation and a linear

mixed integer formulation with connectivity constraints, and study different classes of valid

inequalities. In Section 3 we introduce a branch-and-cut approach including a preprocessing

routine and the separation of ad-hoc valid inequalities, while Section 4 describes a four-step

4

heuristic that is used to provide an initial feasible solution for the exact method. In Section

5 the results obtained on a large set of instances are analyzed. We test different variants of

the proposed heuristic and compare the resulting streamlined version of our exact method to

the performance of Cplex 12.3 when solving the three-index single-commodity flow formula-

tion. Finally, in Section 6 some conclusions are drawn, and future developments are briefly

sketched.

2 Mathematical formulations and valid inequalities

In this section we describe two mixed integer linear programming formulations for the

MVTPP-ESC. The first one is a three-index one-commodity flow formulation. The sec-

ond one introduces connectivity constraints to avoid subtours. Connectivity constraints

are exponential in number. Since it is not computationally possible to introduce all such

constraints in a MILP solver model, they are usually removed from the formulation and

a separation algorithm solving a min-cut/max-flow problem is used to add only violated

inequalities. On the contrary, in the three-index single-commodity flow formulation, the

number of constraints, although large, remains polynomial thus avoiding the recourse to

separation algorithms.

2.1 Three-index one-commodity flow formulation

To correctly introduce the commodity flow formulation we represent each edge e ∈ E of our

indirected graph as a pair of directed arcs (i, j) and (j, i), imposing that, for each pair of

nodes, no more than one arc can be used, and define A := {(i, j) : i ∈ V, j ∈ V, i 6= j} as the

arcs set. For any set S ⊂ V , let δ+(S) denote the set of arcs (i, j) with i ∈ S and j ∈ V \ S,

and δ−(S) denote the set of arcs (i, j) with j ∈ S and i ∈ V \ S. When a single node i ∈ V
is considered, we will write δ+({i}) or δ−({i}).

Let us introduce the following sets of binary and continuous variables:

xvij :=

{
1 if arc (i, j) is crossed by vehicle v

0 otherwise
, i ∈ V, j ∈ V, v ∈ F ,

yvi :=

{
1 if supplier i is visited by vehicle v

0 otherwise
, i ∈M, v ∈ F,

wvk :=

{
1 if product k is loaded on vehicle v

0 otherwise
, k ∈ K, v ∈ F,

zvik ≥ 0 quantity of product k purchased in supplier i by vehicle v, k ∈ K, i ∈Mk, v ∈ F.

In commodity flow models, the connectivity requirement is imposed through a set of

5

continuous variables representing the flow of one or more “commodities” from the depot

to the suppliers. In our model, a single commodity is sent from the depot in an amount

equal to the total demand
∑

k∈K dk and is absorbed by each visited supplier i in an amount

equal to the quantity purchased
∑

k∈K z
v
ik. We define as f vij ≥ 0, (i, j) ∈ A, v ∈ F, the flow

variables representing the quantity on vehicle v when it leaves supplier i and arrives in j.

The flow variables will define a number of paths stemming from the depot exactly equal to

the number of optimal routes and each path will establish a sequence of suppliers that will

be imposed to be part of an elementary tour starting and ending to the depot.

The MVTPP-ESC can be formulated as follows:

(MVTPP-ESCflow) min
∑
v∈F

∑
(i,j)∈A

cijx
v
ij +

∑
k∈K

∑
i∈Mk

∑
v∈F

pikz
v
ik (1)

s.t.
∑
v∈F

∑
j∈M

f v0j =
∑
k∈K

dk (2)

∑
(i,j)∈δ+({i})

f vij −
∑

(i,j)∈δ−({i})

f vij = −
∑
k∈K

zvik i ∈M, v ∈ F (3)

f vij ≤ Qxvij (i, j) ∈ A, v ∈ F (4)

xvij + xvji ≤ 1 i, j ∈ V, i 6= j, v ∈ F (5)∑
i∈Mk

∑
v∈F

zvik = dk k ∈ K (6)

∑
v∈F

zvik ≤ qik k ∈ K, i ∈Mk (7)

zvik ≤ qiky
v
i k ∈ K, i ∈Mk, v ∈ F (8)

wvk + wvg ≤ 1 (k, g) ∈ B, v ∈ F (9)

wvk ≤
∑
i∈Mk

zvik ≤ dkw
v
k k ∈ K, v ∈ F (10)

xvij ∈ {0, 1} (i, j) ∈ A, v ∈ F (11)

yvi ∈ {0, 1} i ∈ V, v ∈ F (12)

wvk ∈ {0, 1} k ∈ K, v ∈ F (13)

f vij ≥ 0 (i, j) ∈ A, v ∈ F (14)

zvik ≥ 0 k ∈ K, i ∈Mk, v ∈ F (15)

Objective function (1) establishes the minimization of traveling and purchasing costs. Con-

straint (2) states that the commodity flow leaving the depot is equal to the total demand.

For each vehicle v ∈ F , the flow conservation constraints (3) establish that
∑

k∈K z
v
ik units

6

of commodity are purchased from supplier i, i ∈ M . Constraints (4) imply that a flow for

a given vehicle v can be sent along an arc (i, j) only if the arc has been traversed (i.e. only

if xvij = 1). Constraints (5) guarantee that each arc can be traversed in only one direction.

Constraints (6) ensure that each product demand must be satisfied. Constraints (7) state

that for each supplier the quantity loaded for a product k by all vehicles cannot exceed the

product supply. Constraints (8) imply that if vehicle v loads a quantity of product k in

supplier i then the supplier must be in its solution tour (yvi = 1). Inequalities (9) and (10)

model the exclusionary side constraints. The first group of constraints state that for each

pair of incompatible products (k, g) ∈ B a vehicle v can load at most one of the two. The

second set of constraints ensure that if wvk = 0, vehicle v cannot load product k from any

suppliers of its tour, whereas if wvk = 1 the vehicle is free to purchase the product in any

supplier that sells it, but the total quantity cannot exceed value dk. Finally, (11)-(15) are

variables non-negativity and integrality conditions.

This formulation has the merit to be compact, and then can be easily implemented by

means of a common MILP solver such as Cplex. Nevertheless, since the number of variables

required is quite large and the continuous relaxation provided quite weak, reaching the

optimal solution in a reasonable amount of time is often impossible in large size instances.

2.2 Connectivity constraints based formulation

A connectivity constraints based formulation can be obtained from (MVTPP-ESCflow) by

substituting inequalities (2), (3), (4), and (14) with the following ones:∑
(i,j)∈δ+({h})

xvij =
∑

(i,j)∈δ−({h})

xvij = yvh h ∈ V, v ∈ F (16)

∑
(i,j)∈δ+(S)

xvij ≥ yvh S ⊆M,h ∈ S, v ∈ F (17)

∑
k∈K

∑
i∈Mk

zvik ≤ Q v ∈ F. (18)

We call the resulting model (MVTPP-ESCconn). In constraints (16) we impose that if vehicle

v visits a supplier h (i.e. yvh = 1), it also has to leave it. Connectivity inequalities (17) allow

to eliminate subtours. Finally, constraints (18) impose that the quantity loaded on each

vehicle does not exceed its capacity.

2.3 Valid Inequalities

In the following, we propose some classes of valid inequalities that will be used in the branch-

and-cut approach to solve the (MVTPP-ESCconn) formulation.

7

The first class of inequalities limits the value of binary variables associated with ex-

clusionary constraints with the lower bound on the number of vehicles required to satisfy

product demands. In particular, the total number of vehicles on which a product k ∈ K can

be loaded, i.e.
∑

v∈F w
v
k, cannot be lower than the rounded up ratio between the demand of

k and the capacity of the vehicle:∑
v∈F

wvk ≥ ddk/Qe k ∈ K. (19)

The second class of inequalities imposes that if a product k is purchased at a supplier i

using vehicle v (zvik ≥ 0) then such a vehicle has to load the product k (wvk = 1):

zvik ≤ min{qik, dk}wvk, i ∈Mk, v ∈ F, k ∈ K. (20)

A third class of inequalities establishes that if a product k is loaded on a vehicle v, at

least one of the supplier offering that product have to be visited by that vehicle:∑
i∈Mk

yvi ≥ wvk k ∈ K, v ∈ F. (21)

Finally, the last class considers a generalization to the multi-vehicle case of SEC inequal-

ities for TPP which involve z-variables (see Laporte et al. [17]):∑
(i,j)∈δ+(S)

∑
v∈F

xvij ≥
∑
i∈S

∑
v∈F

zvik/dk k ∈ K,S ⊆Mk. (22)

Each inequality (22) imposes that at least one arc must enter a subset S ⊆Mk whenever some

amount of any product is purchased in at least one supplier of S. This type of inequalities

can be disaggregated into O(|F |) cuts as follows:∑
(i,j)∈δ+(S)

xvij ≥
∑
i∈S

zvik/dk,∀k ∈ K,S ⊆Mk, v ∈ F. (23)

.

3 The branch-and-cut approach

We propose a branch-and-cut framework to solve the (MVTPP-ESCconn) formulation. Al-

though the optimal integer solution provided by the two formulations is the same, (MVTPP-

ESCconn) contains less variables and its linear relaxation is stronger than that of (MVTPP-

ESCflow) providing a better lower bound for the problem. This means that (MVTPP-

ESCconn) is a better candidate for a branch-and-cut approach. The drawback is represented

by constraints (17), that are exponential in the number of suppliers, forcing us to separate

8

them dynamically (i.e., during the branch-and-cut searching tree). Our implementation of

the branch-and-cut also includes a preprocessing routine, the separation of some classes of

valid inequalities and a starting integer initial solution obtained using the four-step heuristic

described in Section 4.

3.1 Preprocessing

Preprocessing routine aims at determining some useful information from the input data.

In particular, it checks for suppliers needed for the satisfaction of the demand, i.e. it com-

putes the set M∗ :=
{
i ∈M : ∃k ∈ K :

∑
j∈M\{i} qjk < dk

}
, and use it to add the following

inequalities: ∑
v∈F

yvi ≥ 1, i ∈M∗.

Moreover, it computes the set K∗ :=
{
k ∈ K :

∑
i∈M qik = dk

}
corresponding to products

without decision options to substitute some inequalities (7) with the following:∑
v∈F

zvik = qik, i ∈M,k ∈ K∗.

Finally, since products demands have to be satisfied exactly, we can replace coefficients qik

with min{qik, dk}, i ∈M,k ∈ K.

3.2 Separation procedures

In this section we describe separation algorithm for valid inequalities (17) and (22). Given

a fractional solution (x∗, y∗, z∗, w∗), these cuts can be separated exactly in polynomial time

using ad hoc max-flow separation problems.

Separation procedure for inequalities (17). Given a vehicle v, let us define the capac-

itated graph Gv = (V,A), obtained from G by imposing on each arc (i, j) ∈ A a capacity

equal to the value of xv∗ij . Now, given a supplier i such that yv∗i 6= 0, the most violated con-

straint (17) corresponds to a minimum-capacity cut (S, V \S) in Gv separating node 0 from

i, and such that i ∈ S. This cut can be easily determined in O(|M |3) time by computing

a maximum flow in Gv from 0 to i. Since a max-flow is solved for each i ∈ M and each

v ∈ F , the entire separation problem for inequalities (17) can be executed inO(|M |3|F |) time.

Separation procedure for inequalities (22). Since
∑

i∈M
∑

v∈F z
v
ik = dk, inequalities

(22) can be rewritten as follows:∑
(i,j)∈δ+(S)

∑
v∈F

xvij +
∑
i∈M\S

∑
v∈F

zvik/dk ≥ 1 ∀S ⊆M,∀k ∈ K.

9

Hence, given a product k, we can formulate a max-flow problem on a capacitated graph Gk :=

(V ′, A′) where V ′ = V ∪{t} (consider t as a dummy node), and A′ = A∪{(i, t) : i ∈M}. We

set the capacity of each arc (i, j) ∈ A equals to
∑

v∈F x
v∗
ij , and the capacity of each new arc

(i, t) equal to
∑

v∈F z
v
ik
∗/dk. Now, let (V̄ , V ′\V̄) be a minimum-capacity cut in G′ separating

0 and t, with t ∈ V̄ . If the capacity is less than 1, then S := V̄ \ {t} yields the most vio-

lated constraint (22). Since a max-flow, that can be executed in O(|M |3), is solved for each

k ∈ K, the entire separation problem for inequalities (22) has a O(|M |3|K|) time complexity.

Finally, also inequalities (23) are exponential in number. However, we decide not to

implement any separation procedure for these classes (see details in Section 5.2).

3.3 Breaking symmetry

In the model used for developing our branch-and-cut all the variables are indexed by vehicles

(this is true for the flow formulation too). Although there exist two-index formulations for

vehicle routing problems that ignore vehicles (when they are identical), in our case vehicles

index is forced by the exclusionary constraints. This leads to a larger number of variables

and, since we have an homogeneous fleet, to symmetry issues. In fact a feasible solution can

be represented by every permutations of the vehicle indexes, that are O(|F |!) in number.

This means that each route in our feasible solution can be selected by a different vehicle

without damaging the feasibility or the objective function value. Since symmetry could be

penalizing in enumerative methods, we decide to globally break it including in the model

the following inequalities:

yv0 ≤ yv−1
0 , v ∈ F \ {1}. (24)

Constraints (24) introduce an order in the use of the vehicles, allowing a vehicle to be used

only if the preceding vehicle has already been used.

4 A four-step heuristic

We introduce a simple heuristic procedure based on a smart decomposition of the MVTPP-

ESC. We consider four different decision steps, each one treated in a different way and

depending on the decision taken in the previous one, as follows:

1. The suppliers selection: this step decides which suppliers will make part of a solution.

In our algorithm, the supplier selection is tackled by an enumerative scheme limited

through a Beam Search heuristic. The method identifies promising set of suppliers on

the basis of the cost evaluation provided by the three following subproblems.

10

2. The purchasing plan: this step corresponds to the solution of a subproblem that decides

the quantity for each product that has to be purchased at the suppliers, so that products

demand is satisfied. The suppliers are those selected in step 1.

3. The vehicles scheduling : this subproblem decides, for each vehicle, which suppliers have

to be visited, which quantity of each product has to be collected in each supplier, and

consequently which products are loaded on which vehicle All these assignments have to

be done guaranteeing the exclusionary side constraints. We implemented three greedy

heuristics to solve this subproblem and an exact recovery method that minimizes the

number of vehicles used.

4. The vehicles routing : in this step a route (a cycle starting and ending at the depot and

visiting all chosen suppliers) is selected for each vehicle. Since we want to minimize

traveling costs, a Traveling Salesman Problem (TSP) has to be solved for each vehicle

and this is done heuristically.

4.1 The suppliers selection

Problem defined in step 1 is solved by means of a Beam Search (BS) strategy on a balanced

tree in which each node is represented by a binary vector of size |M | corresponding to

a particular combination of selected (value set to 1) and non-selected (value set to zero)

suppliers. More precisely, the root node of our searching tree has all the suppliers selected

(all values to 1), and each child node has all selected supplier of the parent node minus one.

However, since necessary suppliers could exist, only suppliers in M \M∗ are eliminated from

the solution during the search. We call l-st level (of the tree) the set of nodes that have the

same number of non-selected suppliers equal to l. Figure 2 shows the structure of the tree

for a sample problem with |M | = 4.

Figure 2: Supplier selection’s exploration tree

The Beam Search is a heuristic algorithm that explores a graph or a tree by expanding

11

only a limited set of promising nodes (see e.g. Akyüz et al. [1] for a recent employment of a BS

in a single and multi-commodity multi-facility problem). The main idea of our algorithm is

indeed to evaluate heuristically the goodness of the nodes, and continue the search expanding

only those most promising. This procedure is pseudocoded in Algorithm 1. In particular, for

each level of the tree, the algorithm evaluates all nodes within the set remainingNodeslevel.

The remainingNodes0 set is initialized with the root node, that contains all the suppliers.

Each other remainingNodeslevel set is dynamically filled with all the children of a subset

(bestlevel−1) containing the p most promising nodes in remainingNodeslevel−1, where p is a

given parameter. Algorithm 1 continues until a threshold time TMAX is reached or no nodes

remain to be evaluated.

Algorithm 1 Beam Search

1: level← 0;

2: remainingNodes0 = {rootNode};
3: while (remainingNodeslevel 6= ∅ and TMAX is not reached) do

4: Evaluate all nodes in remainingNodeslevel;

5: Choose the bestlevel, i.e. the p most promising nodes in remainingNodeslevel;

6: Add to remainingNodeslevel+1 all the children of each node in bestlevel;

7: level← level + 1;

8: end while

The procedure used for evaluating a node is pseudocoded in Algorithm 2. Given a

node, i.e. a subset of suppliers, its evaluation is done solving sequentially the other three

subproblems. More precisely, we optimally solve the purchasing plan subproblem by means

of an LP solver. If a feasible purchasing plan is found, this is completed by choosing a

feasible vehicles scheduling and a feasible route for each vehicle, and assigning the resulting

total cost to the current node. Otherwise, if the demand can not be satisfied by the selected

suppliers, the current node is discarded from the tree. The rationale behind this is that an

infeasible node can only generate an infeasible subtree, since each generated child has one

supplier less than its parent.

4.2 The purchasing plan

Let M̄ be the set of suppliers selected in a node of the tree. To optimize the purchasing plan

we formulate the following subproblem:

min
∑
k∈K

∑
i∈M̄

pikzik (25)

12

Algorithm 2 Evaluating a node

1: Optimize the purchasing plan subproblem;

2: if the purchasing plan is infeasible then

3: Delete the node from the tree;

4: else

5: Find a feasible vehicles scheduling ;

6: Find a feasible vehicles routing ;

7: Assign to the node the value of the resulting total cost;

8: end if

s.t.
∑
i∈M̄

zik = dk k ∈ K (26)

0 ≤ zik ≤ qik k ∈ K, i ∈ M̄ (27)

where zik :=
∑

v∈F z
v
ik are continuous variables. Since this problem can be decomposed into

|K| Transportation Problems it is easy-to-solve. We decide to solve it optimally through an

LP solver and we call z̄ the resulting optimal solution.

4.3 The vehicles scheduling

We propose three procedures for solving the vehicles scheduling subproblem, each one focused

on a different optimization aspect. In particular, HSup, HEsc, and HProd are greedy heuristics

where the assignment of products to vehicles and that of vehicles to the suppliers are done

supplier by supplier, supplier by supplier but privileging incompatible products, and product

by product, respectively.

Given an initial set of suppliers, HSup selects randomly a supplier to serve. Then, chosen

a vehicle within the fleet, it assigns that vehicle to the supplier and loads as much as possible

of the available products provided that: a) quantity loaded for each product is bounded by

the optimal purchasing plan; b) exclusionary constraints are satisfied; c) the capacity of the

vehicle is not overflowed. The priority on the use of vehicles is controlled by their current

distances from the considered supplier, i.e. HSup uses first the vehicle that is located at the

closest supplier. All vehicles are initially placed at the depot. If a vehicle is not sufficient

to completely serve a supplier, the second vehicle in order of priority is chosen, and so on.

This procedure is repeated for each supplier until they are all served.

The method HEsc works exactly as the previous one, but it separately considers incom-

patible and free products. More precisely, the algorithm runs twice the HSup procedure. The

first time HSup will consider only incompatible products, then the vehicles are brought back

to the depot. The second time HSup is executed considering only the remaining free products.

13

Greedy HProd tries to complete the purchasing of each incompatible product first, irre-

spective of the suppliers that offer it, and to assign it to the minimum number of vehicles.

More precisely, it chooses randomly an incompatible product. Then, selected randomly a

vehicle within the fleet, it assigns that vehicle to the product and loads on it all the possible

quantity provided by the suppliers. If a vehicle is not sufficient (capacity constraint) or not

allowed (exclusionary constraint) to completely load a product, another vehicle is chosen,

and so on. This procedure is repeated for each incompatible product until they are all pur-

chased. Finally, for each supplier, the remaining free products are purchased filling up the

vehicles that have been already associated to that supplier.

Since the proposed greedy heuristics can sporadically terminate without finding a feasible

solution, we also implement a recovery procedure (Veh) consisting in the optimal resolution

of the following model focused on the minimization of the number of vehicles used:

min
∑
v∈F

rv (28)

s.t.
∑
v∈F

zvik = z̄ik k ∈ K, i ∈ M̄ (29)

zvik ≤ qiky
v
i k ∈ K, i ∈ M̄, v ∈ F (30)∑

v∈F

yvi ≥ 1 i ∈ M̄ (31)

wvk + wvg ≤ 1 (k, g) ∈ B, v ∈ F (32)

wvk ≤
∑
i∈M̄

zvik ≤ dkw
v
k k ∈ K, v ∈ F (33)

∑
i∈M̄

yvi ≤ |M |rv v ∈ F (34)

yvi ∈ {0, 1} i ∈ M̄, v ∈ F (35)

wvk ∈ {0, 1} k ∈ K, v ∈ F (36)

rv ∈ {0, 1} v ∈ F (37)

zvik ≥ 0 k ∈ K, i ∈ M̄, v ∈ F (38)

Variables rv are binary and take value 1 if vehicle v is used, and 0 otherwise. Beside

the already explained inequalities, constraints (29) state that the quantity loaded for each

product in each supplier has to be equal to the optimal purchasing plan (z̄), constraints (31)

force vehicles to visit suppliers currently selected (set M̄) at least once, and each constraints

(34) sets rv = 1 if vehicle v visits at least one supplier. As already said, the objective function

(28) minimizes the number of vehicles used. The optimal solution of this subproblem is

obtained by means of a MILP solver.

14

4.4 The vehicles routing

Once decided which suppliers have to be visited by a vehicle, the routing subproblem aims

at finding a visiting tour for each vehicle so to minimize the global traveling cost. As states

before, this corresponds to solving a TSP for each vehicle. In our implementation this is done

using the Lin-Kernighan-Helsgaun (LKH) heuristic (Helsgaun [15]), that is a recent variant

of one of the most successful methods for generating optimal or near-optimal solutions for

the symmetric TSP.

5 Computational experiments

This section is devoted to present the setting and the results of our computational experi-

ments. We first aim to compare our exact approach, as described in Section 3 with the plain

resolution of the (MVTPP-ESCflow) model and then to evaluate efficiency and effectiveness

of our four-step heuristic. We use Cplex 12.3 to solve optimally subproblems and as a general

branch-and-cut framework, implementing and incorporating our separation procedures with

the C++ Concert Technology’s callbacks. The algorithms have been coded in C/C++ and

tested on an Intel Core i7 (quad core) computer, with 8 GB RAM and running Windows 7

64-bit operating system.

5.1 Instances

Since the MVTPP-ESC has never been studied before, no benchmark instances are available

in the literature. We decided to build our problems starting from benchmark instances

available for the TPP in Laporte et al. [17]. More precisely, the suppliers integer coordinates

are randomly generated in a [0, 1000]× [0, 1000] square according to a uniform distribution

and routing costs are computed as Euclidean distances. Each product k is associated with

|Mk| randomly selected suppliers, where |Mk| is randomly generated in the interval [1, |K|].
Product prices pik are selected in interval [1,10] according to a discrete uniform distribution.

For each product k and each supplier i, qik is randomly generated in [1,15], and dk =

λmaxi∈Mk
qik + (1 − λ)

∑
i∈Mk

qik with λ ∈ [0, 1]. The bigger the λ value, the lower the

number of suppliers selected in an optimal solution.

To generate exclusionary sets, we firstly fix the percentage of free products f%, i.e. the

products that can be transported together. Then, for each incompatible product, we ran-

domly choose the number and the set of products with which there is an incompatibility and

we construct the exclusionary pairs. The structure of the instance can be better controlled

this way.

Finally, we need to determine the number u of available vehicles in order to guarantee

15

that at least a feasible assignment of products to the vehicles exists. If we do not consider

the vehicles capacity, this assignment can be found by solving the well-known Minimum

Vertex Coloring Problem (MVCP), which tries to color all the nodes of a given a graph

Gc = (V c, Ec) in such a way that two adjacent nodes do not have the same color, minimizing

the number of colors used. In our case, V c = K and Ec = B (i.e. each node corresponds

to a product and two products are adjacent in Gc if and only if they are incompatible),

and each color used corresponds to a different vehicle. Hence, the optimal solution value

of MVCP (i.e. the minimum number of colors needed) represents a lower bound for the

number of vehicles required. Not only, but the optimal solution of the MVCP establishes

which product is assigned to each vehicle. To be sure that the number of vehicles is enough

to satisfy demand, that value has to be adjusted on the basis of the vehicle capacity Q.

Then, for each vehicle, we calculate the sum of demands of assigned products and compare

it with Q: if that vehicle can transport all the assigned products, only a vehicle is needed,

otherwise the number of necessary vehicles is obtained rounding up the ratio of the total

demand over Q. The rationale for solving an NP-hard problem like the MVCP, instead of

assigning a large value to u, is to keep the number of vehicles as small as possible, given that

the MVTPP-ESC formulations size highly depend on u.

For our computational experiments we consider instances with a number of suppliers

m = {20, 35, 50}, a number of products n = {50, 100}, and two values for λ parameter, i.e.

λ = {0.1, 0.8}. We also consider two percentage values of free products f%, 80% and 90%.

This means that the more complex instances have 20% of cross-incompatibilities between

products. Moreover, we use two different capacities Q of vehicles, i.e. {1500, 3000} for

instances with 90% of free products, and {2000, 4000} for those with 80% of free products.

Finally, 3 different instances (# := {1, 2, 3}) for each combination of {|V |, |K|, λ,Q, f%}
have been generated, this means 144 instances all together. Instances can be downloaded at

the web page http://www.ing.unibs.it/∼orgroup/instances.html.

5.2 Implementation details

The streamlined version of our branch-and-cut has several implementing details, derived

from some preliminary tuning tests and specified in the following:

• valid inequalities (19), (20) and (21), that are polynomial in number, are introduced

directly in the model, and not separated dynamically. Since in our instances the number

of linear relaxation solved is huge, it seems to be less time consuming to work with an

initial slightly bigger model than to spend too much CPU time checking for these cuts

at each relaxation.

• inequalities (22) come out to be not so effective to strengthen the model, while their

16

separation procedure is very time consuming. Hence, we decide to separate them only

at the root node. Also inequalities (23) are not separated for the same reasons;

• in order to avoid out-of-memory problems caused by the massive adding of inequalities

(17) during the branch-and-cut tree, we decide to separate them only at the root node,

and to add them in a lazy way during the rest of the tree. Separating a cut in a lazy

way means that the procedure is activated only when an integer solution is found, and

not for each linear relaxation solution;

• as stated in Section 3.2, for separating valid inequalities (17) and (22) we need to

solve max-flow problems. Although different polynomial-time algorithms exist in the

literature (see for instance, Goldberg and Tarjan [12]) we prefer to solve it through the

optimal solution of its dual problem, the min-cut problem, by means of an LP solver.

While using a solver does not affect too much the computational time of a single max-

flow problem on respect to an ad hoc procedure, the real time saving occurs when a

great number of very similar problems have to be solved serially, as in our case. Our

method allows us to solve a new separation by re-optimizing on a min-cut model after

only changing very few coefficients.

5.3 Computational results and analysis

We first analyze the three variants of the proposed heuristic obtained associating the Beam

Search to one of the greedy methods proposed for the vehicle scheduling subproblem. We

named them BS+HSup, BS+HEsc, and BS+HProd. We have also decided to test, as an additional

method, the heuristic obtained associating the Beam Search to the optimal solution of the

model (28)-(38), and we named it BS+Veh. The best performing variant will be used to

provide an input solution to our branch-and-cut approach. In these procedures we have set

the number p of best promising nodes to expand for each level equal to 4, and the threshold

time TMAX equal to 120 seconds.

Table 1 reports the results for the four methods on a subset of 24 instances with f% = 90,

uniquely identified by the combination of parameters {|V |, |K|, λ,Q}. For each method the

objective function (obj) of the best solution found, the percentage error (∆% = [zH − z∗]×
100/z∗, where zH is the solution value of the corresponding method and z∗ is the value of

the best solution found), and the computational time t in seconds are specified. For each

instance, when the objective function value found by a method is the best one among the

four variants, the corresponding figure is highlighted in bold font in column obj. It is evident

how, on average, BS+HProd outperforms all the other methods, reaching the best solution in

22 out of 24 instances and requiring the lowest average time. BS+HSup and BS+HEsc have a

slightly worse performance than BS+HProd achieving an average percentage error equal to 0.48

17

and 0.41, respectively, whereas BS+Veh is strongly overcome (in computational time and in

solution quality) by the other heuristics. Notwithstanding in BS+Veh the vehicles scheduling

is done by optimally solving a model, the minimization of the number of vehicles used as

objective function probably leads to solutions with higher traveling costs, and consequently

to a worse evaluation of nodes in the BS tree. Finally, BS+HProd has been chosen as starting

heuristic for the branch-and-cut. When it leads to an infeasible solution, the BS+Veh is used

as recovery method.

Table 1: Comparison between variants of four-step heuristic
BS+HSup BS+HEsc BS+HProd BS+Veh

|V | m λ Q obj ∆% t obj ∆% t obj ∆% t obj ∆% t

20 50 10 1500 871726 0.46 0 868318 0.06 0 867759 0.00 0 877429 1.11 0

20 50 10 3000 868300 0.11 0 868401 0.12 0 867366 0.00 0 873369 0.69 0

20 50 80 1500 188409 0.47 1 188409 0.47 1 187535 0.00 1 189948 1.29 9

20 50 80 3000 188409 0.47 1 188409 0.47 1 187535 0.00 1 189948 1.29 10

20 100 10 1500 1728519 0.52 0 1721982 0.14 0 1719508 0.00 0 1738362 1.10 1

20 100 10 3000 1723312 0.23 0 1721982 0.15 0 1719357 0.00 0 1730958 0.67 0

20 100 80 1500 312469 0.21 0 313362 0.50 0 311800 0.00 0 315675 1.24 10

20 100 80 3000 313362 0.41 0 313362 0.41 0 312088 0.00 0 316648 1.46 8

35 50 10 1500 1365524 0.00 0 1366326 0.06 0 1366245 0.05 0 1372780 0.53 0

35 50 10 3000 1361314 0.08 0 1360422 0.01 0 1360223 0.00 0 1364243 0.30 0

35 50 80 1500 185652 1.06 15 185660 1.06 16 183710 0.00 13 189150 2.96 120

35 50 80 3000 185182 0.80 17 185182 0.80 16 183710 0.00 13 186808 1.69 120

35 100 10 1500 2990262 0.11 0 2988226 0.05 0 2986833 0.00 0 3008446 0.72 2

35 100 10 3000 2981376 0.12 0 2978939 0.04 0 2977859 0.00 0 2990177 0.41 1

35 100 80 1500 375947 1.02 13 374982 0.77 15 372133 0.00 11 386585 3.88 120

35 100 80 3000 374768 0.73 14 374756 0.73 14 372040 0.00 11 380716 2.33 121

50 50 10 1500 1746209 0.48 1 1740642 0.16 1 1737798 0.00 1 1756933 1.10 12

50 50 10 3000 1738157 0.28 1 1735259 0.12 1 1733246 0.00 1 1747969 0.85 8

50 50 80 1500 202310 0.68 67 202133 0.59 62 200948 0.00 55 207126 3.07 120

50 50 80 3000 202070 0.56 64 202070 0.56 66 200948 0.00 54 203182 1.11 120

50 100 10 1500 3929091 0.24 0 3924293 0.11 0 3919860 0.00 0 3962182 1.08 13

50 100 10 3000 3919134 0.30 0 3911863 0.11 0 3907498 0.00 0 3936555 0.74 10

50 100 80 1500 406571 2.23 74 404253 1.65 81 397710 0.00 61 414886 4.32 121

50 100 80 3000 394855 0.00 67 397720 0.73 73 397792 0.74 56 407053 3.09 121

0.48 14 0.41 15 0.03 12 1.54 44

Table 4-6 show the results obtained by our branch-and-cut approach (B&C) and by the

plain resolution of (MVTPP-ESCflow) formulation with Cplex 12.3 (CplexFlow) for instances

with |V | = 20, 30, and 50, respectively. We set a threshold time for the two exact proce-

dures equals to 2 hours, i.e. 7200 seconds. In each of these tables the first five columns

(f%, |K|, λ,Q,#) uniquely identify the solved instance. The consecutive two columns refer

to the BS+HProd heuristic and represent its percentage error (∆%) with respect to the best

solution found by B&C and its computational time t in seconds. Concerning B&C, the column

headings have the following meaning: obj is the value of the best solution found (possibly

the optimal one), gap% is the percentage gap of this solution from the best lower bound

found in the branch-and-cut tree, t is the CPU time in seconds, and ttb (time to best) is

18

the CPU time needed to find the best feasible solution. Concerning CplexFlow, beyond the

gap%, t and ttb columns, we report the percentage error (∆%) of this method with respect

to the best solution found by B&C. In columns gap%, the entries are highlighted in bold font,

when the optimal solution has been found, i.e. gap% = 0.00.

CplexFlow method seems to have a very poor performance in almost all tested instances.

In 44 out of 144 instances, it has even not been able to find a feasible solution within 2 hours

of computational time (6, 17 and 21 instances with |V | = 20, 35 and 50, respectively). In

the remaining instances, it has been able to find the optimal solution only twice, and the

average gaps are quite high, i.e. 1.40%, 3.25% and 4.66% for |V | = 20, 35 and 50 instances,

respectively. These results strongly confirm preliminary findings in Manerba and Mansini

[18].

Let’s now look at B&C performance. The method has been able to achieve 30 optimal so-

lutions, the most part of which in instances with |V | = 20. Moreover, the average optimality

gaps (equal to 0.63%, 1.44% and 1.62% for |V | = 20, 35 and 50 instances, respectively) are

more than halved in the first two cases with respect to CplexFlow gaps, while the last gap is

almost a third. Apart from gaps, the quality of the solution is, on average, better as shows

in column ∆% of CplexFlow: when available, the average percentage error with respect to

our method is quite small for |V | = 20 (i.e. 0.15%), but then it increases to 0.89 and 1.63 for

|V | = 35 and 50, respectively. CplexFlow outperforms B&C providing a better solution only

in 3 instances (see the negative values in ∆% column), but the percentage errors are really

negligible. Finally, the results of our heuristic BS+HProd also deserves a particular attention.

Columns ∆% of BS+HProd in Tables 4-6 show that the average errors with respect to the

best solution found by B&C are very small (0.53%, 0.30% and 0.36% for |V | = 20, 35 and

50 instances, respectively). For 28 instances the heuristic method even terminates with the

same solution found by the B&C. Since computational times of BS+HProd can not exceed 120

seconds, our four-step heuristic represents a valid solving procedure.

For sake of completeness, in Tables 2 and 3 we conclude the analysis showing the

most relevant information on our branch-and-cut method. In particular, Table 2 summa-

rizes the B&C improvements with respect to CplexFlow results. For each combination of

{|V |, |K|, λ, f%, Q}, the table reports the total number of times, out of 3, where B&C reaches

or outperforms CplexFlow solutions, whereas into brackets the number of strict improve-

ments is shown. It can be clearly seen how our method reaches or outperform Cplex 12.3

in the quasi-totality of the instances, and is strictly the best method in about 83% of the

cases. Finally, Table 3 reports the average number (on the 3 random generated instances)

of violated valid inequalities (17) and (22) added, and the average number of nodes (#nod)

visited in the branch-and-cut tree.

19

Table 2: B&C improvements
f% = 90 f% = 80

|V | |K| λ Q = 1500 Q = 3000 Q = 2000 Q = 4000 Tot. impr

20 50 10 3(2) 3(1) 3(2) 3(1) 12(6)

50 80 3(0) 3(0) 3(1) 3(1) 12(2)

100 10 3(3) 3(3) 3(3) 3(3) 12(12)

100 80 3(2) 3(2) 3(3) 3(3) 12(10)

35 50 10 2(2) 3(2) 3(3) 3(3) 11(10)

50 80 2(2) 3(1) 2(2) 3(3) 10(8)

100 10 3(3) 3(3) 3(3) 3(3) 12(12)

100 80 3(3) 3(3) 3(3) 3(3) 12(12)

50 50 10 3(3) 3(3) 3(3) 3(3) 12(12)

50 80 3(3) 3(3) 3(3) 3(3) 12(12)

100 10 3(3) 3(3) 3(3) 3(3) 12(12)

100 80 3(3) 3(3) 3(3) 3(3) 12(12)

34(29) 36(27) 35(32) 36(32) 141(120)

Table 3: B&C details
|V | |K| λ f% = 90, Q = 1500 f% = 90, Q = 3000 f% = 80, Q = 2000 f% = 80, Q = 4000

(17) (22) #nod (17) (22) #nod (17) (22) #nod (17) (22) #nod

20 50 10 734 95 182501 743 122 17409 486 140 122893 897 109 179559

50 80 632 127 467126 704 138 36779 366 108 2382 860 234 34273

100 10 733 122 18606 743 68 113082 815 114 1375850 1088 257 27085

100 80 1401 225 302623 1181 172 15945 1314 237 59365 2367 163 87604

35 50 10 1261 203 419409 3499 202 199613 1834 238 51420 5827 185 70351

50 80 1761 184 117491 2094 164 294044 2396 170 52885 4860 173 73371

100 10 2466 634 26 3619 332 38662 840 257 1035 11068 343 21230

100 80 981 333 12530 2404 224 5228 2558 256 18597 2061 184 7396

50 50 10 2022 375 42028 3683 194 27922 6705 321 20539 5463 215 28331

50 80 9563 195 42568 3052 382 44 8470 210 46605 2379 391 60

100 10 8296 170 80657 2255 410 16930 12135 194 34555 2155 350 17900

100 80 5255 445 5 4714 403 35018 2747 362 5 12501 308 11057

6 Conclusions

In this paper we study a new variant of the multi-vehicle traveling purchaser problem charac-

terized by the presence of incompatible products that cannot be loaded on the same vehicle.

The problem is extremely challenging and, to the best of our knowldge, it has never been

studied up to now. A branch-and-cut algorithm is proposed, together with ad hoc classes of

valid inequalities. The method provides on a large set of instances results that outperform,

both in quality and in efficiency, those obtained by Cplex 12.3 when used as MILP solver to

tackle a three-index single commodity flow formulation of the problem.

We also introduce a four-step heuristic procedure to find an initial feasible solution. The

method itself comes out to be quite effective and extremely efficient, yielding a valuable

solving method for the most difficult instances.

Finally, looking at the good results obtained by our four-step heuristic, we believe that its

basic idea of tackling separated subproblems could be further studied, representing a good

20

starting point to develop a new stand-alone matheuristic procedure for the MVTPP-ESC.

References

[1] Akyüz, M. H., Öncan, T., Altinel, K. I., 2013. Beam search heuristics for the single and

multi-commodity capacitated multi-facility weber problems. Computers & Operations

Research 40 (12), 3056–3068.

[2] Angelelli, E., Mansini, R., Vindigni, M., 2009. Exploring greedy criteria for the dynamic

traveling purchaser problem. Central European Journal of Operations Research 17, 141–

158.

[3] Angelelli, E., Mansini, R., Vindigni, M., 2011. Look-ahead heuristics for the dynamic

traveling purchaser problem. Computers & Operations Research 38, 1867–1876.

[4] Angelelli, E., Mansini, R., Vindigni, M., 2012. The stochastic and dynamic traveling

purchaser problem. Working paper.

[5] Beraldi, P., Bruni, M. E., Manerba, D., Mansini, R., 2013. The traveling purchaser

problem under uncertainty. (submitted).

[6] Bianchessi, N., Mansini, R., Speranza, M., 2014. The distance constrained multiple

vehicle traveling purchaser problem. European Journal of Operational Research 235 (1),

73–87.

[7] Burstall, R., 1966. A heuristic method for a job-scheduling problem. Operation Research

Quart. 17 (3), 291–304.

[8] Cao, B., Uebe, G., 1995. Solving transportation problems with nonlinear side constraints

with tabu search. Computers & Operations Research 22 (6), 593 – 603.

[9] Choi, M., Lee, S., 2011. The multiple traveling purchaser problem for maximizing sys-

tem’s reliability with budget constraints. Expert Systems with Applications 38, 9848–

9853.

[10] Dror, M., Trudeau, P., 1989. Saving by split delivery routing. Transportation Science

23, 141–145.

[11] Fallahi, A., Prins, C., Calvo, R. W., 2008. A memetic algorithm and a tabu search for

the multi-compartment vehicle routing problem. Computers & Operations Research 35,

1725–1741.

21

[12] Goldberg, A., Tarjan, R., 1988. A new approach to the maximum-flow problem. Journal

of the ACM 35, 921–940.

[13] Goossens, D., Spieksma, F. C., 2009. The transportation problem with exclusionary

side constraints. 4OR 7 (1), 51–60.

[14] Gouveia, L., Paias, A., Voss, S., 2011. Models for a traveling purchaser problem with

additional side-constraints. Computers & Operations Research 38, 550–558.

[15] Helsgaun, K., 2000. An effective implementation of the lin-kernighan traveling salesman

heuristic. European Journal of Operational Research 126, 106–130.

[16] Iori, M., Martello, S., 2010. Routing problems with loading constraints. TOP 18 (1),

4–27.

[17] Laporte, G., Riera-Ledesma, J., Salazar-González, J. J., 2003. A branch-and-cut al-

gorithm for the undirected traveling purchaser problem. Operations Research 51 (6),

940–951.

[18] Manerba, M., Mansini, M., 2013. Multi-vehicle traveling purchaser problem with exclu-

sionary side constraints. In: Proceedings of VeRoLog2013 Conference. p. 63.

[19] Mansini, R., Tocchella, B., 2009. The traveling purchaser problem with budget con-

straint. Computers & Operations Research 36, 2263–2274.

[20] Mendoza, J. E., Castanier, B., Guret, C., Medaglia, A. L., Velasco, N., 2011. Con-

structive heuristics for the multicompartment vehicle routing problem with stochastic

demands. Transportation Science 45 (3), 346–363.

[21] Muyldermans, L., Pang, G., 2010. On the benefits of co-collection: Experiments with

a multi-compartment vehicle routing algorithm. European Journal of Operational Re-

search 206 (1), 93 – 103.

[22] Ramesh, T., 1981. Traveling purchaser problem. Opsearch 18, 78–91.

[23] Riera-Ledesma, J., Salazar-Gonzàlez, J., 2012. Solving school bus routing using the

multiple vehicle traveling purchaser problem: a branch-and-cut approach. Computers

& Operations Research 39 (1), 391–404.

[24] Riera-Ledesma, J., Salazar-Gonzàlez, J., 2013. A column generation approach for a

school bus routing problem with resource constraints. Computers & Operations Research

40 (1), 566–583.

22

Appendix: Tables

Table 4: B&C vs CplexFlow on |V | = 20 instances
BS+HSup B&C CplexFlow

f% |K| λ Q # ∆% t obj gap% t ttb ∆% gap% t ttb

90 50 10 1500 1 0.07 0 867173 0.48 7200 2087 0.02 1.14 7200 6931

50 10 1500 2 0.08 0 908238 0.29 7200 858 0.00 0.65 7200 7068

50 10 1500 3 0.16 0 757537 0.00 236 105 0.00 0.22 7200 6729

50 10 3000 1 0.02 0 867173 0.02 7200 1132 0.00 0.87 7200 7041

50 10 3000 2 0.06 0 908238 0.00 1874 754 0.05 0.85 7200 7147

50 10 3000 3 0.06 0 757537 0.00 49 36 0.00 0.22 7200 6882

50 80 1500 1 0.65 1 186330 0.00 10 10 0.00 0.08 7200 121

50 80 1500 2 0.38 1 162371 0.00 249 137 0.00 1.03 7200 6525

50 80 1500 3 0.68 0 137517 0.00 20 15 0.00 0.15 7200 143

50 80 3000 1 0.65 1 186330 0.00 10 10 0.00 0.00 1535 72

50 80 3000 2 0.38 1 162371 0.00 209 70 0.00 0.94 7200 6541

50 80 3000 3 0.68 0 137517 0.00 21 17 0.00 0.00 3693 104

100 10 1500 1 0.01 0 1719310 0.84 7200 7071 - - 7200 -

100 10 1500 2 0.20 0 1742201 0.41 7200 7200 - - 7200 -

100 10 1500 3 0.17 0 1787437 0.58 7200 7200 0.09 0.68 7200 3240

100 10 3000 1 0.01 0 1719229 0.53 7200 7200 0.27 1.12 7200 7200

100 10 3000 2 0.20 0 1741900 0.30 7200 6843 0.01 0.66 7200 6918

100 10 3000 3 0.04 0 1787286 0.37 7200 3839 0.50 1.12 7200 1270

100 80 1500 1 1.15 0 308263 0.00 6713 558 0.01 1.41 7200 7200

100 80 1500 2 0.74 1 313638 1.51 7200 7098 0.16 2.23 7200 7172

100 80 1500 3 0.24 1 332741 0.00 2198 860 0.00 0.38 7200 6508

100 80 3000 1 1.24 0 308263 0.00 3543 347 0.12 1.55 7200 6958

100 80 3000 2 2.42 17 313623 0.13 7200 2106 0.10 1.22 7200 6830

100 80 3000 3 0.10 1 332741 0.00 843 129 0.00 0.52 7200 6574

80 50 10 2000 1 0.38 0 866853 0.00 846 785 0.02 0.47 7200 7139

50 10 2000 2 0.44 0 905475 0.00 1868 179 0.00 0.05 7200 6904

50 10 2000 3 0.44 0 764166 0.00 389 110 0.01 0.65 7200 7140

50 10 4000 1 0.11 0 866853 0.00 31 29 0.00 0.25 7200 6550

50 10 4000 2 0.08 0 905475 0.00 45 28 0.00 0.02 7200 297

50 10 4000 3 0.05 0 764171 0.00 31 27 0.03 0.18 7201 6532

50 80 2000 1 0.05 2 191051 0.00 111 68 0.09 1.75 7200 6756

50 80 2000 2 0.59 2 163769 0.00 98 56 0.00 0.88 7200 6500

50 80 2000 3 0.84 1 140682 0.05 7200 161 0.00 3.17 7200 7016

50 80 4000 1 0.05 2 191051 0.00 185 68 0.01 1.56 7200 6529

50 80 4000 2 0.59 2 163769 0.00 123 59 0.00 1.01 7200 6580

50 80 4000 3 0.84 1 140682 0.00 3122 688 0.00 2.44 7200 6805

100 10 2000 1 0.32 0 1724280 1.09 7200 7156 - - 7200 -

100 10 2000 2 0.37 0 1750482 1.09 7200 7200 - - 7200 -

100 10 2000 3 0.01 0 1795719 1.05 7200 7200 - - 7200 -

100 10 4000 1 0.10 0 1724253 0.98 7200 6623 0.27 1.43 7200 3712

100 10 4000 2 0.25 0 1749743 0.98 7200 6958 - - 7200 -

100 10 4000 3 0.23 0 1791756 0.67 7200 5085 0.37 1.23 7200 7200

100 80 2000 1 0.44 0 316911 3.67 7200 7200 2.13 6.55 7200 7200

100 80 2000 2 2.71 34 319140 2.63 7200 7200 0.31 3.71 7200 7134

100 80 2000 3 1.71 44 339506 3.29 7200 7200 0.33 3.95 7200 7200

100 80 4000 1 0.45 0 316887 3.78 7200 7200 0.72 5.08 7200 6539

100 80 4000 2 2.45 33 319132 2.51 7200 7193 0.27 3.67 7200 7200

100 80 4000 3 1.73 43 339431 3.08 7200 7100 0.25 3.84 7200 7200

0.53 4 0.63 4076 2943 0.15 1.40 7009 5793

23

Table 5: B&C vs CplexFlow on |V | = 35 instances
BS+HSup B&C CplexFlow

f% |K| λ Q # ∆% t obj gap% t ttb ∆% gap% t ttb

90 50 10 1500 1 0.37 0 1361244 0.40 7200 7200 0.12 0.52 7200 7200

50 10 1500 2 0.04 0 1437840 0.55 7200 7200 -0.04 0.50 7200 7200

50 10 1500 3 0.31 0 1209113 0.42 7200 7200 0.16 0.64 7200 7200

50 10 3000 1 0.08 0 1359082 0.00 100 43 0.01 0.04 7200 2991

50 10 3000 2 0.10 0 1432005 0.00 707 630 0.00 0.04 7200 7002

50 10 3000 3 0.03 0 1206324 0.00 139 135 0.00 0.07 7200 6838

50 80 1500 1 0.37 12 183041 0.16 7200 6583 0.24 1.71 7200 7195

50 80 1500 2 0.64 14 173777 0.65 7200 6847 -0.02 2.05 7200 7200

50 80 1500 3 0.47 9 177365 0.10 7200 5604 0.03 2.56 7200 7200

50 80 3000 1 0.37 12 183041 0.00 6753 745 0.00 0.89 7200 7100

50 80 3000 2 0.71 13 173657 0.00 305 152 0.00 1.41 7200 6955

50 80 3000 3 0.47 9 177365 0.00 1820 639 0.28 2.04 7200 7199

100 10 1500 1 0.00 0 2986833 0.80 7200 209 - - 7200 -

100 10 1500 2 0.00 0 2917799 0.68 7200 456 - - 7200 -

100 10 1500 3 0.00 0 2993262 0.76 7200 524 - - 7200 -

100 10 3000 1 0.01 0 2977581 0.51 7200 7200 - - 7200 -

100 10 3000 2 0.01 0 2910222 0.43 7200 7200 - - 7200 -

100 10 3000 3 0.00 0 2986465 0.55 7200 158 - - 7200 -

100 80 1500 1 0.91 10 368794 1.86 7200 7016 3.66 5.74 7200 972

100 80 1500 2 0.23 12 353152 1.97 7200 7200 2.70 4.90 7200 702

100 80 1500 3 0.10 11 368082 3.40 7200 7200 1.79 5.41 7200 2803

100 80 3000 1 0.93 10 368611 1.60 7200 7200 1.88 4.03 7200 752

100 80 3000 2 0.23 12 352827 1.82 7200 7134 1.40 3.51 7200 7200

100 80 3000 3 0.01 11 368179 3.28 7200 7088 - - 7200 -

80 50 10 2000 1 0.04 0 1365599 0.52 7200 7145 - - 7200 -

50 10 2000 2 0.06 0 1441876 0.45 7200 6929 0.23 1.09 7200 7195

50 10 2000 3 0.06 0 1212349 0.50 7200 7200 - - 7200 -

50 10 4000 1 0.04 0 1365504 0.32 7200 7061 0.08 0.83 7200 7148

50 10 4000 2 0.06 0 1441768 0.33 7200 7200 0.50 1.37 7200 7200

50 10 4000 3 0.07 0 1212217 0.41 7200 7200 0.05 0.83 7200 7200

50 80 2000 1 0.85 15 189733 2.82 7200 6998 0.56 5.41 7200 7200

50 80 2000 2 0.83 15 180704 4.46 7200 7144 -0.03 4.93 7200 7200

50 80 2000 3 1.12 8 183183 3.79 7200 7200 0.85 5.99 7200 7200

50 80 4000 1 0.82 15 189789 2.88 7200 7007 0.30 4.95 7200 7200

50 80 4000 2 1.01 15 180382 3.00 7200 7200 0.34 5.38 7200 7200

50 80 4000 3 1.17 8 183081 3.71 7200 7200 0.45 5.98 7200 7200

100 10 2000 1 0.00 0 2990986 0.96 7200 67 - - 7200 -

100 10 2000 2 0.00 0 2929535 1.08 7200 374 - - 7200 -

100 10 2000 3 0.00 0 2994928 0.83 7200 149 - - 7200 -

100 10 4000 1 0.02 0 2986108 0.75 7200 7200 - - 7200 -

100 10 4000 2 0.01 1 2928109 1.00 7200 7200 - - 7200 -

100 10 4000 3 0.10 0 2991843 0.67 7200 6017 - - 7200 -

100 80 2000 1 0.00 14 380060 4.51 7200 30 2.87 7.92 7200 3279

100 80 2000 2 0.36 16 359222 2.90 7200 7194 4.17 7.35 7200 7200

100 80 2000 3 0.58 12 369101 3.03 7200 7066 2.43 6.04 7200 7200

100 80 4000 1 0.16 15 378273 4.08 7200 7200 - - 7200 -

100 80 4000 2 0.35 15 359262 2.74 7200 7200 2.71 6.47 7200 7200

100 80 4000 3 0.43 13 369679 3.28 7200 7194 - - 7200 -

0.30 6 1.44 6505 5082 0.89 3.25 7200 6146

24

Table 6: B&C vs CplexFlow on |V | = 50 instances
BS+HSup B&C CplexFlow

f% |K| λ Q # ∆% t obj gap% t ttb ∆% gap% t ttb

90 50 10 1500 1 0.00 0 1737798 0.76 7200 34 - - 7200 -

50 10 1500 2 0.00 1 2130913 0.92 7200 75 - - 7200 -

50 10 1500 3 0.00 0 1994485 0.77 7200 71 - - 7200 -

50 10 3000 1 0.01 1 1732998 0.35 7200 7178 0.38 0.89 7200 0

50 10 3000 2 0.01 1 2121931 0.41 7200 7200 - - 7200 -

50 10 3000 3 0.02 0 1988792 0.39 7200 7171 0.45 0.93 7200 1404

50 80 1500 1 0.58 54 199780 2.25 7200 7200 0.26 3.75 7200 7200

50 80 1500 2 0.75 44 209430 0.68 7200 7200 0.95 2.77 7200 7200

50 80 1500 3 0.43 38 213850 1.23 7200 7162 1.15 3.26 7200 7200

50 80 3000 1 0.84 54 199266 0.61 7200 7191 0.21 3.07 7200 7047

50 80 3000 2 0.70 44 209059 0.20 7200 6817 0.10 1.35 7200 7063

50 80 3000 3 0.55 38 213585 0.45 7200 6964 0.00 1.57 7200 6971

100 10 1500 1 0.00 0 3919860 0.81 7200 1654 - - 7200 -

100 10 1500 2 0.00 0 3801784 0.75 7200 1486 - - 7200 -

100 10 1500 3 0.00 0 4385054 0.88 7200 2819 - - 7200 -

100 10 3000 1 0.00 0 3907498 0.50 7200 263 - - 7200 -

100 10 3000 2 0.00 0 3790026 0.45 7200 421 - - 7200 -

100 10 3000 3 0.00 0 4371270 0.57 7200 581 - - 7200 -

100 80 1500 1 0.02 60 397644 2.35 7200 7200 1.70 4.15 7200 3078

100 80 1500 2 0.00 51 399830 2.82 7200 37 2.78 5.54 7200 4096

100 80 1500 3 0.03 80 440429 2.67 7200 7014 1.14 3.80 7200 4324

100 80 3000 1 0.22 57 396904 1.87 7200 7200 1.97 4.26 7200 1733

100 80 3000 2 0.38 52 398264 2.26 7200 7200 1.19 3.80 7200 7200

100 80 3000 3 0.08 76 439435 2.33 7200 7200 0.98 3.45 7200 2506

80 50 10 2000 1 0.01 1 1743001 0.99 7200 7176 - - 7200 -

50 10 2000 2 0.00 1 2130593 0.86 7200 7198 - - 7200 -

50 10 2000 3 0.01 1 1999149 0.97 7200 6909 - - 7200 -

50 10 4000 1 0.03 1 1742495 0.85 7200 7200 1.44 2.49 7200 2420

50 10 4000 2 0.08 1 2128653 0.69 7200 7056 - - 7200 -

50 10 4000 3 0.04 1 1998461 0.88 7200 7200 - - 7200 -

50 80 2000 1 0.86 47 204770 4.01 7200 7200 5.71 10.84 7200 7200

50 80 2000 2 0.07 54 214151 0.68 7200 7200 0.13 2.73 7200 7200

50 80 2000 3 0.87 53 216408 0.44 7200 7200 0.29 3.28 7200 7118

50 80 4000 1 0.79 47 204897 3.59 7200 7198 8.38 13.24 7200 3731

50 80 4000 2 0.08 59 214118 1.03 7200 6858 0.79 4.48 7200 7178

50 80 4000 3 0.86 57 216430 0.69 7200 7200 0.14 2.62 7200 7007

100 10 2000 1 0.00 0 3927672 1.02 7200 1118 - - 7200 -

100 10 2000 2 0.00 0 3808624 0.93 7200 1168 - - 7200 -

100 10 2000 3 0.00 1 4389237 0.97 7200 1570 - - 7200 -

100 10 4000 1 0.00 0 3927456 1.01 7200 375 - - 7200 -

100 10 4000 2 0.00 0 3806717 0.88 7200 204 - - 7200 -

100 10 4000 3 0.00 1 4384496 0.86 7200 247 - - 7200 -

100 80 2000 1 0.00 72 406293 4.35 7200 42 3.04 7.44 7200 2665

100 80 2000 2 0.59 120 415129 6.52 7200 7200 0.70 7.24 7200 6796

100 80 2000 3 0.67 120 462180 7.25 7200 7200 4.75 11.49 7200 6604

100 80 4000 1 2.56 120 402072 3.17 7200 7200 1.77 5.33 7200 7200

100 80 4000 2 3.08 120 404480 3.41 7200 7200 1.30 5.11 7200 4583

100 80 4000 3 2.27 120 450108 4.55 7200 7200 2.22 6.87 7200 5803

0.36 34 1.62 7200 4868 1.63 4.66 7200 5279

25

