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Abstract

A company needs to purchase a number of products from a set of suppliers that offer

products at given prices applying quantity discounts. The Total Quantity Discount

Problem (TQDP) is a procurement problem that looks for a subset of suppliers so to

minimize purchasing cost while satisfying products demand. We consider the capac-

itated variant of the problem (CTQDP) where quantity of a product available from

a supplier is limited. The problem is strongly NP-hard motivating the study of effec-

tive and efficient heuristic methods. We introduce an hybrid algorithm, called HELP,

exploiting the optimal solution of mixed integer subproblems. The method, while

conceived for this special problem, results to be a general approach that could be effec-

tively adapted also to other combinatorial optimization problems. Proposed method

has been tested on existing benchmark instances and has been able to improve best

known values.

Key words: hybrid heuristics, supplier selection, total quantity discount.

1 Introduction

In the last few decades, the supplier (or vendor) selection problem has gained increasing

attention in both practice and literature. The general problem is usually formalized as two

joint decisions on which suppliers should be selected and on how much should be ordered

from the selected suppliers.

The CTQD problem is a supplier selection problem where suppliers apply volume dis-

counts depending on the total quantity ordered. The problem can be described as follows:

Let S := {1, . . . , n} be a set of suppliers and let K := {1, . . . ,m} be a set of products.

Each product k ∈ K can be purchased in a subset Sk ⊆ S of suppliers at a non-negative
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basic price pik, potentially different for each supplier i ∈ Sk. For each product k ∈ K a

positive integer demand dk is defined, and for each product k ∈ K and each supplier i ∈ Sk a

quantity availability qik is specified, such that
∑

i∈Sk qik ≥ dk. Each supplier i ∈ S defines a

set Ri = {1, . . . , ri} of ri consecutive and non-overlapping discount intervals [lri , u
r
i ], where lri

and uri are minimum and maximum number of product units to be purchased from supplier

i to be in interval r. We assume that
∑

k∈K qik ≤ urii , i ∈ S. A discount rate δri is associated

to each interval r ∈ Ri such that δr+1
i ≥ δri , r = 1, . . . , ri− 1. The interval in which the total

quantity purchased lies determines the discount applied by the supplier to the total purchase

cost (total quantity discount policy). For sake of simplicity we convert the discount rates into

non-increasing unit prices prik ≥ 0, i.e. pr+1
ik ≤ prik, r = 1, . . . , ri − 1. The Capacitated Total

Quantity Discount problem looks for a subset of suppliers so that total demand is satisfied

at a minimum purchasing cost.

The CTQDP problem generalizes the TQD problem described in Goossens et al. [2007],

where suppliers are assumed to have unlimited availability for offered products. The authors

provide a first mathematical formulation, show NP-hardness and some properties and study

some variants of the problem. They also propose a branch-and-bound algorithm based

on a min-cost flow problem formulation, and compare it to plain CPLEX 8.1 and to the

same solver used as a plain branch-and-bound on instances with 10, 20 and 50 suppliers, a

maximum of 3 or 5 volume intervals and a number of products equal to 40 and 100.

In Manerba and Mansini [2011] the authors provide the first branch-and-cut approach to

solve the CTQDP and define a set of benchmark instances including up to 100 suppliers and

500 products. The availability of exact solutions for such test instances makes it possible

the evaluation of the performance of heuristic algorithms. To the best of our knowledge no

stand-alone heuristic approaches have been proposed for the CTQDP. Heuristics can however

be found for other procurement problems for both the case where product demands are

assumed to be deterministic quantity as well as a stochastic one (see for example Rosenblat

et al. [1998], Chauhan and Proth [2003] and Awasthi et al. [2009]).

The Travelling Purchaser Problem is a classical example of procurement problem involv-

ing both travelling and purchasing cost. In Riera-Ledesma and Salazar-Gonzàlez [2005] the

authors propose a heuristic approach based on a local search scheme. In Angelelli et al.

[2009] and Angelelli et al. [2011] the authors analyze a dynamic extension of the TPP where

quantities offered by the suppliers are assumed to decrease over time. Two groups of heuris-

tics are described and compared. The first group are simplified approaches based on greedy

criteria, the second one includes heuristics based on a look-ahead approach taking future

prediction into account. In Mansini and Tocchella [2009] a version of the TPP is analyzed

where total purchasing costs should not exceed a predefined threshold. The authors provide

an enhanced local search heuristic and a VNS tested in a multi-start variant. In Mansini R.
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[2011] the TQD procurement problem is extended to include truckload shipping costs. The

authors develop integer programming based heuristics to solve the problem and demonstrate

their efficacy on a large set of randomly generated instances.

In this paper we study a heuristic method, enhancing the basic procedure called HELP

initially proposed in Manerba and Mansini [2011]. The method uses information provided

by LP relaxation optimal solution to formulate and solve exactly mixed integer subproblems.

More precisely, the framework is a Variable Neighborhood Search with Decomposition (see

Hansen et al. [2001] for general information about this approach). Iteratively, some features

of the current solution are kept fixed and the problem is decomposed to a smaller subspace

explored exactly through the optimal solution of the resulting mixed integer subproblem.

The effectiveness of the heuristic is proved over the set of benchmark instances proposed in

Manerba and Mansini [2011]. The optimal solution value for some of these instances is still

unknown.

HELP is a hybrid method combining a meta-heuristic approach with the exact solution

of MIP subproblems. Computing optimal solutions although computationally intractable

can be a valid tool when the subproblem solved has a limited size. Hybrid meta-heuristics

have received considerable interest these recent years. A wide variety of hybrid approaches

have been proposed in the literature for different combinatorial optimization problems. Al-

though exact and approximate approaches have usually been considered mutually exclusive,

many hybrid methods combine features of exact and approximate methods (see for instance

Glover et al. [1996] and Nagar et al. [1996]). More recently, French et al. [2001] propose a

hybrid algorithm, combining genetic algorithms and integer programming branch-and-bound

approaches, to solve MAX-SAT problems. Haouari and Ladhari [2003] analyze a branch-

and-bound local search method for the flow shop problem and Woodcock and Wilson [2010]

investigate a hybrid method for solving the Generalized Assignment Problem that uses a

commercial software to solve sub-problems generated by a Tabu Search guiding strategy. In

Framinan and Pastor [2008] the authors propose a procedure called Bound Driven Search

that combines features of exact enumeration methods (i.e. branch-and-bound) with ap-

proximate procedures (i.e. local search). Finally, a taxonomy of hybrid meta-heuristics is

discussed in Talbi [2002] in an attempt to provide a common terminology and classification

mechanisms.

This work provides some interesting contributions. First of all, to the best of our knowl-

edge, no heuristic methods exist for the problem. Then, proposed hybrid algorithm provides

some basic ideas which can be easily generalized also to other metaheuristic approaches.

The paper is organized as follows. In Section 2 we describe the mathematical formulation

of the problem where a polynomial number of inequalities are added to strengthen the LP

formulation. In Section 3 the new version of procedure HELP is analyzed. Computational
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results are described in Section 4. Finally, some conclusions are drawn in Section 5.

2 Mathematical Model

Let us define as S∗ :=
{
i ∈ S : there exist k ∈ K such that

∑
j∈Sk\{i} qjk < dk

}
the set of

suppliers that has to be necessarily selected in any feasible solution of the problem, as

K∗ :=
{
k ∈ K :

∑
i∈Sk qik = dk

}
the set of products for which no suppliers selection has to

be done, and as R∗i := {r ∈ Ri :
∑

k∈K qik < lri } the set of intervals for each supplier i ∈ S
that can never be reached also buying all quantities available. We use the following sets of

decision variables:

zrik := number of units of product k purchased from supplier i in interval r,

k ∈ K, i ∈ Sk, r ∈ Ri,

yri :=

{
1 if

∑
k∈K z

r
ik ∈ [lri , u

r
i ]

0 otherwise
i ∈ S, r ∈ Ri.

The Capacitated Total Quantity Discount Problem can be formulated as follows:

(CTQDP) v := min
∑
i∈S

∑
r∈Ri

∑
k∈K

prikz
r
ik (1)

subject to ∑
i∈S

∑
r∈Ri

zrik = dk k ∈ K (2)

∑
r∈Ri

zrik ≤ qik i ∈ S, k ∈ K \K∗ (3)

∑
r∈Ri

zrik = qik i ∈ S, k ∈ K∗ (4)

∑
r∈Ri

yri ≤ 1 i ∈ S \ S∗ (5)

∑
r∈Ri

yri = 1 i ∈ S∗ (6)

∑
k∈K

zrik − lri yri ≥ 0 i ∈ S, r ∈ Ri \R∗i (7)

∑
k∈K

zrik − uriyri ≤ 0 i ∈ S, r ∈ Ri \R∗i (8)

zrik ≤ min{qik, uri}yri , i ∈ S, k ∈ K, r ∈ Ri \R∗i . (9)
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zrik ≥ 0 i ∈ S, k ∈ K, r ∈ Ri \R∗i (10)

zrik = 0 i ∈ S, k ∈ K, r ∈ R∗i (11)

yri ∈ {0, 1} i ∈ S, r ∈ Ri \R∗i (12)

yri = 0 i ∈ S, r ∈ R∗i (13)

Objective function (1) establishes the minimization of the purchasing costs. Constraints

(2) ensure that demand dk is satisfied for each product k, whereas constraints (3) state

that it is not possible to purchase from supplier i an amount of product k larger than

quantity qik available. Constraints (4) state that for each product k ∈ K∗ all quantities

available have to be purchased to satisfy demand. Constraints (5) guarantee that at most

one interval for each supplier is selected, and constraints (6) that a supplier i ∈ S∗ has to

be selected. Constraints (7) and (8) define interval bounds for each supplier. If interval r

for supplier i is selected (yri = 1), then total amount purchased has to lie between the lower

bound lri and the upper bound uri . On the contrary, if interval r is not selected (yri = 0), then∑
k∈K z

r
ik = 0. Valid inequalities (9) are not strictly required by problem formulation but are

added to strengthen linear relaxation and because they are polynomial in number. Finally,

constraints (10)–(13) state non-negativity and binary conditions. Note that, in problem

formulation integrality of z variables is not necessary; this condition is always satisfied if all

input data are integral. Moreover, since demand requirements can not be exceeded, each

coefficient qik can be replaced everywhere by min{qik, dk}. Valid inequalities (9) and just

described properties of the problem can be found in Manerba and Mansini [2011].

3 Solution Algorithm

This section is devoted to deeply explain our solution algorithm. Heuristic Enhancement from

LP (HELP) is a hybrid method, globally structured like a Variable Neighborhood Decompo-

sition Search (VNDS), which explores defined neighborhoods exactly through the optimal

solution of mixed integer subproblems.

Let us indicate as (z(LP ), y(LP )) the value assigned to variables in the optimal solution of

the continuous relaxation problem of (CTQDP). We define as CTQDP(ȳ) the subproblem

obtained from (CTQDP) by fixing all y variables to some feasible value ȳ. We can enunciate

the following proposition:

Proposition 1 Let (z̄, ȳ) be the optimal solution of the subproblem CTQDP(ȳ) when ȳri = 1

if lri ≤
∑

k∈K z
r(LP )
ik ≤ uri and zero otherwise. Then (z̄, ȳ) is a feasible solution for (CTQDP).
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Trivially, a solution generated as above is feasible since intervals are selected according to

quantities purchased satisfying products demand. Notice that, since l0i = 0, i ∈ S, if nothing

has been bought from a supplier, then the first interval is selected. Moreover, subproblem

CTQDP(ȳ) only involves continuous variables but provides integer optimal solutions.

The hybrid method HELP, pseudo-coded in Algorithm 1, receives as input a feasible solu-

tion sI = (zI , yI) computed as in Proposition 1 and provides as output a possibly improved

integer feasible solution sF = (zF , yF ).

Algorithm 1 HELP

Require: integer feasible solution sI = (zI , yI) with value vI .

Ensure: integer feasible solution sF = (zF , yF ) with value vF .

1: sF ← sI , vF ← vI

2: while TMAX is not reached do

3: h← hSTART , sC ← sI , vC ← vI

4: while h > 0 do

5: Randomly select two sets of suppliers H and H ′ with cardinality h and h′ = αh

respectively.

6: Define the neighborhood N(sC , h, h′)

7: Construct the corresponding subproblem and optimally solve it

8: Let s′ be the optimal solution with value v′

9: if v′ < vC then

10: sC ← s′, vC ← v′

11: h← hSTART

12: if v′ < vF then

13: sF ← sC , vF ← vC

14: end if

15: else

16: h← h− hSTEP

17: end if

18: end while

19: end while

The procedure iteratively solve MIP subproblems where only few y variables are not

fixed, i.e. those belonging to sets of suppliers randomly chosen. More precisely, given a cur-

rent feasible solution sC and two random subsets of suppliers H and H ′, we create a new

subproblem where the values of all y variables are fixed as in sC but for those referring to all

intervals of suppliers in H and for those corresponding to the interval selected in sC and its

subsequent (if any exists) for each supplier in H ′. Formally, let h and h′ be the cardinality of
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H and H ′, respectively. We define the neighborhood N(sC , h, h′) as all solutions that differ

from sC for at most h selected intervals in
⋃
Ri, i ∈ H and for at most h′ selected intervals

in
⋃
{wi, wi + 1} ∈ Ri \ {ri}, i ∈ H ′, where wi is the interval selected in the current solution

sC at suppleir i.

The procedure starts by randomly selecting H and H ′ and defining the corresponding neigh-

borhood N(sC , h, h′), then the mixed integer subproblem containing only O(
∑

i∈H |Ri| +
2|H ′|) variables y and all z variables is formulated. The local search phase of the VNDS is

implemented by optimally solving this subproblem with a MIP solver.

If the optimal solution s′ = (z′, y′) has a better value than the best incumbent solution

for that descend sC , then sC is updated and h is reset to its starting value hSTART . If

s′ has a better value than the best solution ever found sF , then sF is updated too. If

no better solution is found h is decreased by hSTEP and the procedure is repeated until h

reaches value 0 (internal while loop). A maximum computing time TMAX is set as stopping

rule: the procedure is repeated until the total time elapsed exceeds such a time threshold

(external while loop). Notice that at each restart the procedure uses the same starting

solution sI . In some preliminary experiments we have noticed that using the best solution

found instead of the initial one is usually less effective since it could easily lead to get stuck

in local minima. We must specify that each subproblem created and optimally solved does

not include inequalities (9) since these are not strictly necessary and really overload the

model affecting computational time. These inequalities are indeed very useful in the first LP

relaxation to provide an initial feasible solution as close as possible, concerning the selection

of discount intervals, to the optimal solution.

HELP has some intrinsic merits. First of all the method does not require additional proce-

dures to verify and eventually restore feasibility (the optimal exploring of each neighborhood

always guarantees the feasibility of the generated solution). Moreover, since the method se-

quentially solves subproblems, the resolution of a new subproblem can be sped up by using

as initial solution the previous integer feasible solution. Finally, the general approach used

by our heuristic can be easily generalized and customized to other MIP problem in which

solutions strongly depend on a set of binary decision variables.

4 Computational Results

In this section we analyze our algorithm’s performance. We have tested HELP on the complete

set of benchmark instances proposed in Manerba and Mansini [2011] and available at the

web page http://www.ing.unibs.it/∼orgroup/instances.html. This set consists of 5 random

instances for each combination of number of suppliers n = {50, 100}, number of products

m = {100, 200, 300, 500}, λ = {0.1, 0.8} and Class = {1, 2}. This means 160 instances all
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together. λ is a parameter strictly related to the number of suppliers in feasible solutions:

λ = 0.1 and λ = 0.8 represent the cases in which the most part of suppliers are necessary

to satisfy the demand and that in which only a restricted part of suppliers are necessary,

respectively. The two classes differ only for the discount policy: in Class 1 suppliers can

have 3 to 5 discount intervals with random rates, whereas in Class 2 suppliers have exactly

3 intervals with discount rates fixed and equal to {0%,10%,50%}.

Table 1: Results for Class 1 instances
λ = 0.1 λ = 0.8

Best HELP Best HELP

|S| |K| i tBK vBK tH # w% m% b% tBK vBK tH # w% m% b%

50 100 1 270 1065331.43 201 1 0.09 0.04 0.00 61 259244.06 50 3 0.06 0.02 0.00

50 100 2 270 1053147.65 202 1 0.11 0.02 0.00 83 239212.53 51 1 0.13 0.11 0.00

50 100 3 244 1063178.97 202 5 0.00 0.00 0.00 72 255411.50 51 5 0.00 0.00 0.00

50 100 4 234 933882.86 201 2 0.01 0.00 0.00 60 245170.07 50 5 0.00 0.00 0.00

50 100 5 234 994708.65 201 2 0.04 0.01 0.00 68 257293.66 50 5 0.00 0.00 0.00

50 200 1 523 1952152.07 404 3 0.01 0.00 0.00 201 504369.86 102 2 0.62 0.22 0.00

50 200 2 607 2132512.11 409 1 0.19 0.08 0.00 199 501271.64 104 2 0.14 0.04 0.00

50 200 3 522 1998714.50 406 5 0.00 0.00 0.00 177 546469.73 102 3 0.17 0.04 0.00

50 200 4 508 2103277.09 405 2 0.09 0.05 0.00 175 520573.11 101 3 0.23 0.09 0.00

50 200 5 517 1935851.94 409 2 0.18 0.08 0.00 164 475366.42 101 5 0.00 0.00 0.00

50 300 1 958 2710818.62 607 3 0.10 0.02 0.00 338 810963.79 157 3 0.13 0.05 0.00

50 300 2 772 2762370.39 609 4 0.04 0.01 0.00 198 801325.23 152 5 0.00 0.00 0.00

50 300 3 975 3150592.95 610 0 0.03 0.02 0.02 264 754396.40 153 4 0.27 0.05 0.00

50 300 4 1093 3180894.49 604 1 0.53 0.14 0.00 208 785817.78 155 5 0.00 0.00 0.00

50 300 5 805 3206291.08 612 3 0.08 0.02 0.00 204 743753.17 151 3 0.25 0.10 0.00

50 500 1 1571 5087519.13 1076 1 0.25 0.11 0.00 738 1320857.89 274 4 0.12 0.02 0.00

50 500 2 1534 4816132.22 1057 3 0.03 0.01 0.00 491 1267401.38 255 2 0.99 0.34 0.00

50 500 3 1711 5073596.64 1023 0 0.23 0.08 0.02 377 1347170.84 257 5 0.00 0.00 0.00

50 500 4 1517 4976074.66 1083 1 0.74 0.32 0.00 436 1219496.74 269 4 0.52 0.10 0.00

50 500 5 1678 5053157.68 1023 0 0.16 0.07 0.02 400 1228369.20 264 4 0.41 0.08 0.00

100 100 1 456 2040173.12 401 4 0.00 0.00 0.00 184 459820.43 101 2 0.63 0.24 0.00

100 100 2 481 1912898.23 401 3 0.02 0.01 0.00 204 422275.23 101 1 0.17 0.09 0.00

100 100 3 453 1873337.80 402 5 0.00 0.00 0.00 149 445686.18 101 1 0.12 0.04 0.00

100 100 4 503 1922911.67 402 2 0.06 0.02 0.00 156 472285.13 101 0 0.95 0.40 0.03

100 100 5 536 2155736.71 402 2 0.01 0.01 0.00 207 416908.89 101 2 0.36 0.15 0.00

100 200 1 873 4360648.52 607 0 0.15 0.05 0.01 570 883411.52 204 3 0.03 0.01 0.00

100 200 2 933 4154529.60 605 0 0.11 0.05 0.00 501 875510.12 202 2 0.31 0.19 0.00

100 200 3 1100 3797749.45 616 1 0.06 0.03 0.00 391 895753.50 202 1 0.64 0.20 0.00

100 200 4 879 3926225.47 610 1 0.02 0.01 0.00 358 883419.34 203 5 0.00 0.00 0.00

100 200 5 962 3668949.23 611 1 0.01 0.00 0.00 421 878740.30 204 1 0.63 0.36 0.00

100 300 1 1504 5719285.13 812 2 0.02 0.01 0.00 2941 1429177.24 319 0 0.54 0.29 0.03

100 300 2 1429 5711788.37 813 0 0.18 0.08 0.01 1241 1433131.13 317 0 1.71 1.00 0.58

100 300 3 1763 5584860.56 821 0 0.10 0.04 0.01 1098 1365427.33 312 3 0.52 0.15 0.00

100 300 4 1583 6143443.91 821 1 0.07 0.02 0.00 1480 1282178.92 301 0 0.55 0.30 0.16

100 300 5 1338 6135946.34 814 0 0.08 0.04 0.01 1221 1255026.29 308 0 1.08 0.80 0.41

100 500 1 2666 9240585.56 1238 0 0.50 0.24 0.01 3591 2264190.57 543 0 0.62 0.34 0.11

100 500 2 2621 9971412.11 1269 0 0.14 0.07 0.01 4035 2290165.46 542 0 0.40 0.21 0.02

100 500 3 3317 9861834.02 1232 0 0.21 0.09 0.01 4808 2229422.19 544 0 2.58 1.73 0.66

100 500 4 5319 9632126.38 1268 1 0.27 0.11 0.00 3644 2025046.59 514 0 1.32 0.57 0.04

100 500 5 5143 9851746.34 1282 0 0.42 0.27 0.14 3976 2218089.75 530 0 3.33 1.92 0.92

0.13 0.06 0.01 0.51 0.26 0.07

All computational tests have been done on an Intel Core Duo 2 GHz computer, with

2 GByte RAM and running Windows Vista 32-bit operating system. This is the same

machine used for testing the exact methods proposed in Manerba and Mansini [2011]. After

some preliminary tests, we have set hSTART = 10, hSTEP = 2, α = b n
100
c and a time

limit Tmax = φ1|K| + φ2b|S|/100c, where φ1 = 1/2 and φ2 = |K|/2 for Class 1 and λ=0.8

instances (which seem to be the most easy to solve) and where φ1 = 2 and φ2 = 200 for all

other instances. In practice TMAX increases linearly with number of products, and has an
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Table 2: Results for Class 2 instances
λ = 0.1 λ = 0.8

Best HELP Best HELP

|S| |K| i tBK vBK tH # w% m% b% tBK vBK tH # w% m% b%

50 100 1 1954 888275.88 202 0 0.62 0.45 0.09 526 209340.00 201 3 2.65 0.97 0.00

50 100 2 573 750361.55 202 0 0.86 0.48 0.10 383 221929.00 202 2 1.45 0.62 0.00

50 100 3 442 784005.14 202 0 1.12 0.75 0.50 419 204096.50 204 1 2.44 1.37 0.00

50 100 4 487 828232.43 203 0 0.64 0.46 0.25 450 233650.00 203 2 0.96 0.42 0.00

50 100 5 483 752930.08 202 1 1.01 0.65 0.00 328 208702.61 201 2 0.21 0.12 0.00

50 200 1 4258 1706913.61 412 0 1.16 0.77 0.42 1254 425279.00 401 4 1.34 0.27 0.00

50 200 2 4530 1542150.28 409 0 0.85 0.67 0.41 1628 470957.00 411 0 2.11 1.32 0.79

50 200 3 2414 1554503.81 403 0 1.88 1.11 0.56 1084 387964.50 409 4 0.90 0.18 0.00

50 200 4 6951 1703115.96 406 0 1.07 0.91 0.66 1676 405405.50 406 3 0.08 0.03 0.00

50 200 5 6888 1569847.52 406 0 1.15 0.91 0.61 663 416658.50 402 5 0.00 0.00 0.00

50 300 1 7793 2447712.05 615 0 1.70 1.18 0.79 2841 632539.00 614 3 2.42 0.67 0.00

50 300 2 7008 2461007.61 613 0 1.41 1.12 0.87 6981 599533.50 603 5 0.00 0.00 0.00

50 300 3 15027 2333156.03 630 0 2.54 1.99 1.44 2762 657022.00 610 4 0.27 0.05 0.00

50 300 4 4371 2164848.92 609 0 1.02 0.91 0.73 3760 624807.00 615 2 1.62 0.91 0.00

50 300 5 15002 2358755.50 614 0 1.45 0.79 0.22 4418 631879.00 610 3 0.81 0.28 0.00

50 500 1 15519 4099394.12 1049 0 0.72 0.59 0.43 1430 1172101.50 1079 2 0.69 0.25 0.00

50 500 2 15420 3847179.41 1054 0 1.89 1.34 0.94 11830 978685.50 1043 3 0.63 0.22 0.00

50 500 3 14777 4037572.32 1048 0 3.91 2.60 1.85 15407 1178217.00 1028 1 1.43 0.86 0.00

50 500 4 15403 3860036.57 1031 0 0.59 0.34 0.08 1420 1135915.50 1022 5 0.00 -0.15 -0.25

50 500 5 15410 3846026.49 1022 0 1.42 0.77 0.39 15440 1069179.00 1019 2 0.36 0.14 -0.16

100 100 1 835 1560407.87 406 0 1.46 1.27 1.02 1553 364230.50 404 2 0.41 0.23 0.00

100 100 2 3505 1430206.02 404 0 0.84 0.59 0.40 3290 383295.50 402 0 2.75 1.60 0.88

100 100 3 2280 1655161.62 404 0 1.04 0.87 0.76 1774 367575.50 402 0 1.94 1.09 0.60

100 100 4 1596 1459152.50 403 0 1.15 0.85 0.60 1729 387625.50 402 0 3.34 2.41 0.83

100 100 5 1313 1570368.95 403 0 2.13 1.30 0.92 1874 374945.00 403 0 2.25 1.72 1.05

100 200 1 15047 3386881.90 608 0 1.10 0.81 0.62 11584 708833.50 612 0 5.00 2.92 1.91

100 200 2 15004 3353533.05 609 0 0.18 0.14 0.09 15061 748779.00 614 0 1.70 1.10 0.13

100 200 3 15021 3359507.13 612 0 0.62 0.50 0.37 15080 775076.00 616 0 4.04 3.14 1.54

100 200 4 10297 3285983.24 621 0 2.20 1.44 0.90 5004 768933.00 615 0 4.36 3.93 3.65

100 200 5 15048 3254487.50 611 0 1.85 1.46 0.89 15007 765640.00 607 0 2.28 2.08 1.91

100 300 1 15340 4867747.01 831 0 1.60 1.18 0.86 15271 1096232.00 813 0 5.18 4.01 2.02

100 300 2 15326 4918446.29 815 0 1.84 1.54 0.77 15265 1164793.00 842 0 2.99 2.63 2.35

100 300 3 15309 4680882.21 842 0 2.20 1.44 0.80 15212 1158439.50 837 0 4.91 4.45 3.79

100 300 4 15287 4942760.09 818 0 2.37 1.14 0.59 15293 1187005.00 831 0 0.52 0.27 0.08

100 300 5 15269 4852938.98 857 0 2.46 1.58 0.75 15262 1214561.00 837 0 2.30 1.42 0.93

100 500 1 15636 8202625.72 1268 0 2.64 1.96 1.62 15721 1821572.00 1382 0 5.24 4.18 2.00

100 500 2 15704 8252585.36 1278 0 4.01 2.09 0.74 15689 1827191.50 1283 0 2.24 1.60 0.87

100 500 3 15609 8522604.60 1279 0 1.29 0.87 0.14 993 1917578.50 1288 4 0.56 -0.04 -0.32

100 500 4 15611 8805448.70 1262 0 1.83 0.95 0.29 15975 1888163.50 1331 0 4.60 3.48 0.82

100 500 5 15906 8277027.11 1299 1 1.76 0.47 -0.06 1026 1851845.00 1239 0 5.20 3.75 1.87

1,54 1,03 0,61 2,05 1,36 0,68

additional bonus time when n =100. Exact local search is implemented by CPLEX 12.2 and

C++ Concert Technology.

Because of random structure of HELP algorithm, we decide to compute 5 trials for each

instance. Averaged results are presented in Tables 1 and 2 (one table for each Class 1 and

2). Each table is divided into two parts, one for each λ value. For each instance (uniquely

identified by the number of suppliers |S|, the number of products |K| and the number of

instance i), each table shows the following columns:

• tBK : computational time in seconds of the best solution known;

• vBK : value of the best solution known;

• tH : computational time in seconds of HELP, averaged on 5 trials;

• #: number of times that HELP reaches or improves the best solution known;
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• w%: worst percentage gap from the value of the best solution known;

• m%: percentage gap, averaged on 5 trials, from the value of the best solution known;

• b%: best percentage gap from the value of the best solution known.

In these last three columns, if the solution value found by HELP is equal or better than the

current best known value (i.e. the percentage gap is less or equal to 0) we have highlighted

the figure in bold font.

A first sight analysis confirms (see Manerba and Mansini [2011] that Class 2 instances

are more difficult to solve than Class 1, and λ = 0.1 instances are harder than λ = 0.8

ones. Considering Class 1, HELP results a heuristic with impressive performance: for 58

instances out of 80, HELP finds the optimal solution in at least one trial and for 11 instances

among these the heuristic gets the optimal solution in all the five trials. In all these cases

computational times for HELP are smaller than the times tBK required by the exact approach.

When the procedure can not reach the optimal solution, gaps from the best knows values

are modest anyway, sometimes irrelevant. Indeed, the worst percentage gaps never overtake

0.74% for λ = 0.1 and 3.33% for λ = 0.8, and the worst averaged gaps on 40 instances are

0.13% for λ = 0.1 and 0.51% for λ = 0.8. Results for Class 2 are less strong, but however

still very good. HELP is able to reach or improve best known values in at least one trial for 23

instances out of 80, and for 3 instances among these the heuristic reaches this goal for all the

five trials. In all these cases computational times are largely lower than tBK values. In this

set of instances, the worst percentage gaps reach 4.01% for λ = 0.1 and 5.24% for λ = 0.8,

and the worst averaged gaps on 40 instances are 1.54% for λ = 0.1 and 2.05% for λ = 0.8.

Medium averaged gaps for the two values of λ settle around to 1%, anyway. Hence, the

heuristic has some discontinuous performance for Class 2 instances, mostly for the hardest

ones (100 suppliers), but if we compare computational times the gaps are enormous. In fact

most part of solutions for Class 2 instances need about 15000 seconds (more than 4 hours)

to be found by an exact method, while HELP never exceed 1382 seconds of running time.

Finally, a very positive note of these results is that for 4 instances HELP has found a better

solution than the best known (i.e. negative percentage gaps).

To conclude HELP is an efficient and effective heuristic method that results especially

robust when complexity of instances increases (larger number of products and suppliers),

thanks also to a good parameters setting.

5 Conclusions

In this paper an effective heuristic method is proposed to solve the CTQDP problem. The

algorithm, called HELP, combines a VNS-like meta-heuristic structure with the exact solution
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of MIP subproblems. The method, tested on a large set of benchmark instances, is shown

to be extremely effective (it has reached the best known value in 77 instances and improved

it in 4 instances, out of 180) and quite efficient.
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