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Introduction




Vehicle Routing Problems

Introduced by Dantzig and Ramser in 1959

One of the most studied problem in the area of
logistics

The basic problem involves delivering given
guantities of some product to a given set of
customers using a fleet of vehicles with limited

capacities.

The objective is to determine a set of minimum-
cost routes to satisfy customer demands.
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Vehicle Routing Problems

Many variants involving different constraints or
parameters:

Introduction of travel and service times with route
duration or time window constraints

Multiple depots

Multiple types of vehicles
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What 1s Stochastic Vehicle Routing?

Basically, any vehicle routing problem in which one
or several of the parameters are not deterministic:

Demands
Travel or service times

Presence of customers
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Main classes of stochastic VRPs

VRP with stochastic demands (VRPSD)

o A probability distribution is specified for the demand of
each customer.

a2 One usually assumes that demands are independent (this
may not always be very realistic...).

VRP with stochastic customers (VRPSC)
o Each customer has a given probability of requiring a visit.

VRP with stochastic travel times (VRPSTT)

o The travel times required to move between vertices, as
well as sometimes service times, are random variables.
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Basic Concepts 1n Stochastic
Optimization




Dealing with uncertainty in optimization

Very early in the development of operations
research, some top contributors realized that :

o In many problems there is very significant
uncertainty in key parameters;

o This uncertainty must be dealt with explicitly.
This led to the development of :

o Stochastic programming with recourse (1955)
o Dynamic programming (1958)

o Chance-constrained programming (1959)

o Robust optimization (more recently)
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Information and decision-making

In any stochastic optimization problem, a key
ISsue IS:
How do the revelation of information on the
uncertain parameters and decision-making
(optimization) interact?
2 When do the values taken by the uncertain
parameters become known?

o What changes can | (must ) make in my plans on
the basis of new information that | obtain?
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Stochastic programming with recourse

Proposed separately by Dantzig and by Beale in
1955.

The key idea is to divide problems in different stages,
between which information is revealed.

The simplest case is with only two stages. The
second stage deals with recourse actions, which
are undertaken to adapt plans to the realization of
uncertainty.

Basic reference:

J.R. Birge and F. Louveaux, Introduction to
Stochastic Programming, 2" edition, Springer, 2011.
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Dynamic programming

Proposed by Bellman in 1958.

A method developed to tackle effectively sequential
decision problems.

The solution method relies on a time decomposition
of the problem according to stages. It exploits the
so-called Principle of Optimality.

Good for problems with limited number of possible
states and actions.

Basic reference:

D.P. Bertsekas, Dynamic Programming and Optimal
Control, 3rd edition, Athena Scientific, 2005.
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Chance-constrained programming

Proposed by Charnes and Cooper in 1959.

The key idea Is to allow some constraints to be
satisfied only with some probabillity.

E.g., In VRP with stochastic demands,
Pr{total demand assigned to route r < capacity } =2 1-a
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Robust optimization

Here, uncertainty is represented by the fact that the
uncertain parameter vector must belong to a given
polyhedral set (without any probability defined)

o E.g., in VRP with stochastic demands,

having set upper and lower bounds for each demand,
together with an upper bound on total demand.

Robust optimization looks in a minimax fashion for the
solution that provides the best “worst case”.
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Modelling Paradigms




Real-time optimization

Also called re-optimization

Based on the implicit assumption that information
IS revealed over time as the vehicles perform their
assigned routes.

Relies on Dynamic programming and related
approaches (Secomandi et al.)

Routes are created piece by piece on the basis on
the information currently available.

[Not always practical (e.g., recurrent situations)]
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A priort optimization

A solution must be determined beforehand:;

this solution is “confronted” to the realization of
the stochastic parameters in a second step.

Approaches:
o Chance-constrained programming

o (Two-stage) stochastic programming with recourse
o Robust optimization
o ["Ad hoc” approaches]
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Chance-constrained programming

Probabllistic constraints can sometimes be transfor-
med into deterministic ones (e.g., in in VRP with
stochastic demands, when one imposes that

Pr{total demand assigned to route r < cap. } = 1-q,
If customer demands are independent and Poisson).

This model completely ignores what happens when
things do not “turn out correctly”.
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‘Robust optimization

= Not used very much in stochastic VRP up to now.

= [Model may be overly pessimistic.]
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Stochastic programming with recourse

Recourse Is a key concept in a priori optimization

o What must be done to “adjust” the a priori solution to the
values observed for the stochastic parameters!

o Another key issue is deciding when information on the
uncertain parameters is provided to decision-makers.

Solution methods:

o Integer L-shaped (Laporte and Louveaux)
o Column generation (Branch & Price)

o Heuristics (including metaheuristics)

Probably closer to actual industrial practices,
If recourse actions are correctly defined!
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VRP with Stochastic Demands




VRP with stochastic demands

Probably, the most studied stochastic vehicle
routing problem.

A variant of the well-known CVRP in which the
customer demands are not fixed quantities, but
Instead random variables with given
distributions.

Building solutions in which capacity constraints
would be satisfied for all possible realizations of
the customer demands is clearly too
conservative.
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VRP with stochastic demands (2)

We must consider solutions in which the total
demand of customers assigned to a given route
can possibly exceed the capacity of a vehicle.

What should be done if this happens ?!?

We must engage in some corrective or
RECOURSE action.
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Classical recourse

It Is Important to understand that recourse actions
should reflect operating policies of the company
operating the fleet of vehicles.

The classical recourse strategy used in most of the
VRPSD literature consists of returning to the depot
to restore the vehicle capacity and then resuming
the planned route from the point of failure.

This strategy allows for an “easy” computation of
the expected recourse associated with any given
route.
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Other possible recourses

The classical recourse strategy is not very bright.
It is even shocking to some people who are not
used to it.

Yang, Mathur, and Ballou (2000) have proposed
a policy of optimal restocking of the vehicle
based on dynamic programming, but it can only
be applied to given routes.

Ak and Erera (2007) have suggested “pairing” to
enhance operations and reduce the number of
back and forth trips back to the depot.
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VRP with stochastic demands

Approximate solutions can be obtained fairly
easily using metaheuristics
(e.g., Tabu Search, as in Gendreau et al., 1996).

Computing effectively the value of the recourse
function still remains a challenge.
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A branch-and-cut approach

(direct formulation)

The following material is taken from

O. Jabali, W. Rel, M. Gendreau, G. Laporte (2014).
New Valid Inequalities for the Multi-Vehicle
Routing Problem with Stochastic Demands.
Discrete Applied Mathematics, 177, 121-136.
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VRPSD model

Input

G(V, E) = undirected graph, V' = {v1,...,vn } and E = {(v;,v;): v;,v; € V,i < j}
&; = demand of client ¢, where : = 2,...,n

C' = (c45) travel cost matrix

D = capacity of each vehicle

Decision variables

| A\

xzi; = {0,1} fori, 7 > 1
T15 = {0,1,2} for j>1

The considered case

| \

Client demands are independent
fj ~ N(,U.j,O’j) and£j € (O,D),j =2,...,n
Recourse rules = return to depot only when failure occurs

For a given route (vy, = v1, Uy, . . - 2 Ury g = v1)
t i—1
o = 235 r(Te cw<3ean
1=21=1

Q(IE) — me{gkl Qk: 2}
i=1
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VRPSD model

(VRPSD)  Minimize » _ cijzi; + Q(x)
i<j
bject t Y
subject to le':2m
J )
j=2
Ziﬂik+z$kj=2: (k=2,...,n),
i<k i>k
> @i <ISI- | Y] E@€)/D|, ScV\{wm},2<|S|<n-2
vi,v5 €S v, €S
0<a; <1 1<i<j<n),
OSxOJS2 (j:2»"~7n)7
x = (z45) integer.
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A branch-and-cut approach

Computational results on problems with independent
truncated Normal demands

o 30 instances for each combination of m and n
o 10 hours of CPU time for each run.

n | m Solved Runtime (min) Gap
60 | 2 19 227 0.2%
0| 2 14 372 0.4%
80 | 2 14 366 0.5%
50 | 3 9 458 0.8%
60 | 3 8 473 1.1%
70 | 3 11 419 1.6%
40 | 4 5) 519 2.5%
50 | 4 1 529 3.9%
60 | 4 3 552 2.9%
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A branch-and-price approach

(set covering formulation)

The following material is taken from

C. Gauvin, G. Desaulniers, M. Gendreau (2014).
A Branch-Cut-and-Price Algorithm for the Vehicle
Routing Problem with Stochastic Demands,

Computers & Operations Research, 50, 141-153.
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BCP VRPSD
L Introduction

Litterature

@ Heuristics
e Tillman (1965) - Savings-based heuristics for multi-depot and

Poisson demands
o Golden, Stewart (1983)

e Gendreau, Séguin (1996) - Tabou search

@ Integer L-shaped method for problems with simple recourse
o Laporte, Louveaux (1993)

Gendreau, Laporte, Séguin (1995)

Hjorring, Holt (1999)

Laporte, Louveaux, Van Hamme (2001)

@ Column Generation
o Christiansen, Lysgaard (2007) Branch-and-price

Our Contribution

Develop a competitive branch-cut-and-price algorithm for the VRPSD based on
the work of Christiansen et Lysgaard (2007).
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BCP VRPSD

L Mathematical model

Notation

@ G=(N'=NU/{o0,0},A) : undirected graph
@ N =1{1,2,....,n} : set of clients
@ A={(i,)li,jeN;i#jU{(o, )i € VIU{(,0o)lj € N} : set of arcs
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BCP VRPSD

L Mathematical model

Notation

cij : determinist travel cost from i € N” a j € N/
p=(i1,...,in) : route where i; € N’ for j € {1,..., h}
cp : determinist travel cost of route p

Cp : total expected failure cost of route p

ajp : binary parameter indicating if route p visits client i € N or not

P : set of all routes from o to o’ which are feasible on average

C34=C43

Con=Cno
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BCP VRPSD

L Mathematical model

Notation

@ V :set of V| identical vehicles
@ Q@ : capacity of a vehicle

[Vl
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BCP VRPSD

L Mathematical model

Notation

@ & ~ V(E¢ [£],Ve [€]) : random variable indicating demand of client i € A/
following distribution W ;

@ Given path p = (i1, i2, ...7p)
° Jl-’:l E¢ [{,J] = Wi, - expected cumulated demand at i,

° Zj-’:l Ve [{,J] = 0, : expected cumulated variance at ip,

V[E1+8+8]=04

III | e c, E[§14+83+84]=p4
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BCP VRPSD

L Mathematical model

Notation - decision variables

First stage

@ Xx;; : binary variable indicating if a vehicle follows the arc (i, /) € A.
@ )\, : binary variable indicating if we choose route p or not

Second stage

@ O(x) : recourse function (expected failure cost of a given route)
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BCP VRPSD
L Mathematical model

L Dantzig-Wolfe Decomposition

Master Problem and Subproblem - VRPSD

m)\in Z EpAp mxin Z Z Ciixij + Q(x)

peP ieN’ jeN’
-1lifj=o0
s. t.: Za,-p)\pzlwe./\/' s.a: Z Xij — Z XJ-,-_{O else Vj € N/
else Vj ¢
peP (i) ({i}) Giest({ih) 1 ifj=o

Xp €{0,1} Vpe Z
DD Eegl<Q
ieN’ jeN!

xj €{0,1} Vi, jeN’

(MP) (SP)

- . H /
Ci=cj—mifj#o
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BCP VRPSD
L Mathematical model

L Dantzig-Wolfe Decomposition

Computation of Q(x)

Given
@ p= (i1,i2, vdh_1, fh) C N’ fromo=1i to in

1Expected failure cost at client iy, for p

h—1
EFC(wiy iy in) = 260, Z Pe | D> & <uQ< Z&,,
u=1 I=1

1-Dror & Trudeau (1987), Laporte et al. (2002), Christiansen & Lysgaard (2007)

Total cost of route p= determinist cost p + expected failure cost p

h

=) <Ci,'ih+1 + EFC(uiy 4> iy 0 ih+1))
=
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BCP VRPSD

L Mathematical model

L Dantzig-Wolfe Decomposition

Creation of the state-space graph GS = (NS, AS)

(W+E[gl0i+V[E])

QVEED | =
QV™™[g])
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BCP VRPSD

L Numerical results

Numerical results

@ Max alloted time : 20 minutes,
@ 3,4 GHz and 16 GB of RAM vs 1,5GHz and 480 MB of RAM = scaling factor : 1.98
@ Poisson demands + A, E, P instances

Base (This work) Christiansen & Lysgaard (2007) Acceleration
Instance Time | LBroot # B & B | # Rounds | # Cuts | # Cuts Time | LBroot #B&B factor
UB Nodes of cuts cC SRI uB Nodes
A-n32-k5 | 24.1 0.98 0 7 6 90 142.4 | 0.96 2467 5.9
A-n33-k5 53 1 0 6 29 15 4 0.99 117 0.8
A-n33-k6 | 4.9 1 0 4 3 20 24.7 0.98 909 5.1
A-n34-k5 | 9.0 0.98 0 6 27 28 # 0.97 16059 > 673
A-n36-k5 || 46.9 0.98 0 10 30 90 # 0.92 8035 >12.9
A-n37-k5 | 23.4 0.98 0 7 12 72 # 0.97 9191 >25.9
A-n37-k6 | 22.8 0.99 2 11 56 62 # 0.98 16195 >26.6
A-n38-k5 | 42.8 0.97 6 11 22 74 # 0.95 14499 >14.2
A-n39-k5 | 5.0 1 0 0 0 0 1.5 1 9 0.3
A-n39-k6 | 19.3 0.99 0 8 28 45 1409 | 0.97 2431 73
A-n44-k6 | 125.0 | 0.99 12 21 21 189 # 0.98 11077 >4.9
A-n45-k6 | 86.3 0.98 2 11 9 120 # 0.9 9313 >7.0
A-n45-k7 | 30.5 1 0 9 8 70 4455 | 0.99 5365 14.6
A-nd6-k7 | 18.7 0.99 0 4 58 30 # 0.98 8149 >32.4
A-n48-k7 | 27.5 0.99 0 6 42 30 # 0.93 7729 >22.0
A-n53-k7 || 512.4 | 0.99 12 23 37 240 # 0.93 5385 >1.2

Charles Gauvin (Ecole Polytechnique de Montréal ) BCP VRPSD 24/29



BCP VRPSD

L Numerical results

Numerical results (cont'd)

Base (This work) Christiansen & Lysgaard (2007) Acceleration
Instance Time | LB root # B & B [ # Rounds | # Cuts | # Cuts Time | LB root #B&B factor
UB Nodes of cuts CcC SRI UB Nodes
A-n54-k7 310.5 0.99 6 18 55 126 # 0.94 5925 >2.0
A-n55-k9 332 0.99 0 7 50 45 # 0.91 9979 >18.3
A-n60-k9 # 0.42 20 35 49 219 # 0.93 6889 #
E-n22-k4 0.1 1 0 0 0 0 0.5 1 9 5
E-n33-k4 32.6 1 0 0 0 0 43.4 0.99 73 13
En51 ks | # 0.95 7 29 23 212 | 097 2771 P
P-n16-k8 0.0 1 0 1 1 0 0 1 17 #
P-n19-k2 9.7 0.94 0 7 4 60 773 0.94 1815 8.0
P-n20-k2 128.8 0.95 6 15 5 130 177.8 | 0.95 3191 1.4
P-n21-k2 2.2 1 0 1 3 0 2.5 0.99 27 11
P-n22-k2 46.7 0.97 0 8 3 90 1106 | 0.97 1335 2.4
P-n22-k8 0.0 1 0 2 1 5 0 1 65 #
P-n23-k8 0.0 1 0 0 0 0 0.5 1 0 #
P-n40-k5 6.9 1 0 1 4 0 4.5 1 35 0.7
P-n45-k5 | 1193.8 | 0.98 12 34 22 272 # 0.95 4561 #
P-n50-k10 54.6 0.99 16 28 29 119 # 0.95 18901 >11.1
P-n50-k7 40.4 0.99 0 11 26 75 # 0.95 5311 >15.0
P-n50-k8 35.7 0.99 2 11 9 98 # 0.91 10409 >17.0
P-n51-k10 10.0 0.99 0 8 21 56 217.2 | 0.99 5431 21.7
P-n55-k10 26.4 0.99 0 10 23 60 # 0.92 11257 >23.0
P-n55-k15 19.9 1 36 32 23 61 400 0.99 20027 20.1
P-n55-k7 103.8 0.99 0 14 22 120 # 0.94 2441 >58
P-n60-k10 | 417.5 0.99 34 52 42 273 # 0.95 4969 >1.5
P-n60-k15 7.0 1 0 7 37 26 # 1 19029 >86.6
Average || 917 | 097 4.25 11.9 21 8055 | 99.6 | 0.96 6284.93 13.6
harles Gauvin (Ecole Polytechnique de Montréal ) BCP VRPSD




A robust optimization approach

C.E. Gounaris, W. Wiesemann, C.A. Floudas (2013).
The Robust Capacitated Vehicle Routing Problem
Under Demand Uncertainty.

Operations Research, 61 (3), 677-693.

The authors consider the generic case where the
customer demands are supported on a polyhedron.

Robust solutions must be feasible for all demand
vectors in the polyhedron.

Several interesting references.
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Some other Recourse Policies for

the VRPSD




Other possible recourses

One can easily imagine other recourse policies, which
would be easily implementable in practice, and which
would make more sense.

This is what we did in the two first papers of Majid
Salavati-Khosgalb’s dissertation:

0 SALAVATI-KHOSHGALB, M., GENDREAU, M., JABALI, O., REl, W., “A Rule-
Based Recourse for the Vehicle Routing Problem with Stochastic
Demands”, Transportation Science. Forthcoming.

0 SALAVATI-KHOSHGALB, M., GENDREAU, M., JABALI, O., REl, W., “A Hybrid
Recourse Policy for the Vehicle Routing Problem with Stochastic
Demands”, EURO Journal on Transportation and Logistics.
Forthcoming.
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Fixed-policy recourses

Each fixed policy can be derived from a given
operational convention.

It generates related policy-based recourse
actions, which are defined as a set of thresholds
assoclated with the customer visits that are
scheduled along a given route.

These thresholds determine when the vehicle
performing the route should preventively return to
the depot.
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Four classes ot pro-active policies

Demand-based policies, in which thresholds
relate directly to the demand levels of customers
or the capacity of the vehicle.

Risk-based policies, in which thresholds are
computed on the basis of the probabillity of failure
at the next or at following customers.

Distance-based policies also account for the
distance between customers and the depot.

Hybrid (or mixed) policies combine features of
two or three of the other classes.

Stochastic VRP : An Overview and
an Exact Method for Optimal Restocking



Three demand-based policies

The aQ policy is defined in terms of the vehicle
capacity Q: PR trips occur whenever the residual
capacity falls below a fraction a of Q.

o Three values are examined for a: 0.05, 0.10, and 0.20.
In this case, all thresholds are equal.

In the second policy considered, the threshold 6ijj is a
function of the expected demand of the following
customer Vvij+1.

o Three values are considered for 3 = 0.80, 1.00, 1.25.

The third policy is based on the expected demand of
the customers remaining on the route after vi;.
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A mixed policy

We consider a mixed policy that combines the basic
structure of a risk-based policy with a distance-based
policy.

After serving each customer, the risk of failure at the
next customer is computed,

o If the risk is high: perform a preventive restocking trip;

o If the risk is low: proceed,

o If the risk is medium: apply a distance-based policy.

The distance-policy criterion is to compare the cost of
a preventive restocking trip at the current location vs.
the expected cost along the remainder of the route.
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an Exact Method for Optimal Restocking



Solution approach

We consider an exact solution approach based on
the Integer L-Shaped method of Laporte and
Louveaux.

The algorithm is coded in C++.

The branching routine is implemented by using the
OOBB package coded at the CIRRELT.

Subtour elimination and stochastic capacity
constraints are separated using the CVRPSEP
package of Lysgaard et al. (2004).

Stochastic VRP : An Overview and
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Solution approach (2)

To enhance running times, we use different families
of lower bounding functionals (valid inequalities)
pertaining to partial routes, as in Jabali et al. (2014).

The lower bounding functionals derive from the idea
originally proposed by Hjorring and Holt (1999)

Generalizing these lower bounding functionals to
deal with the new recourse policies is definitely
non-triviall!l

Stochastic VRP : An Overview and
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An Exact Algorithm to Solve the Vehicle
Routing Problem with Stochastic Demands
under an Optimal Restocking Policy

M. Gendreau®), M. Salavati(®, 0. Jabali®, W. Rei®

(1) : CIRRELT and MAGI, Ecole Polytechnique de Montréal
(2) : CIRRELT and DIRO, Université de Montréal

(3) : CIRRELT and DEIB, Politecnico di Milano

(4) : CIRRELT and ESG, Université du Québec a Montreal



Literature Review Previous Recourse Policies

Recourse Policy: Traditional Recourse

Traditional Recourse Policy

Follow the planned route.

Execute a BF trip whenever route failures observed.
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Literature Review Previous Recourse Policies

Recourse Policy: Traditional Recourse
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Rule-Based Recourse
A Rule-Based Recourse for VRPSD

Rule-Based Recourse Policy

Follow the planned route. Execute BF trips when route failure occurred.
Execute PR trips based on fixed thresholds.

X Vj+1
e <0 [
v; Vjt2
e
U3 @ ® U1
V2 Ut

H DEPOT
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Rule-Based Recourse
A Rule-Based Recourse for VRPSD

Rule-Based Recourse Policy
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Rule-Based Recourse
A Rule-Based Recourse for VRPSD
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A Rule-Based Recourse for VRPSD
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Literature Review Rule-Based Recourse

Recourse Policy:

Rule-Based Recourse Policy

Given planned route i as U = (v = v;,,. .. s Vijy Vigers e« v Vigy Vigyy = v1).
Given threshold 6 = (0;,,...,0;,) for route v.

We define Recourse Function . (q) as the expected recourse cost starting
from vertex v;; with g units of residual capacity:

Recourse Function for Computing Expected Recourse Cost

Z (b+201i]~ +Ej+1(Q+q_€fj))pfj+
55 >0
o _ Z (Cli]- + Clij+1 — Cijij+1 + Fiﬁl(Q))pf-*’ 1
15 (Q)_ S:q_eij <§;Sq J ( )
J
S Fyal-€)r =20t
s:&ijq—&‘j

Q" = F,,(Q), Q(v) =min{Q™,Q"*} (2)
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Literature Review

Literature Review

Volume-based Recourse Policies:

@ Traditional Recourse proposed by Dror and Trudeau (1986).
@® Optimal Restocking Policy proposed by Yee and Golden (1980).

©® A Rule-Based Recourse proposed by Salavati-Khoshghalb, Gendreau,
Jabali, and Rei (2017).

Risk-and-Distance-based Recourse Policy:

O A Hybrid Recourse proposed by Salavati-Khoshghalb, Gendreau,
Jabali, and Rei (2017).
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Optimal Restocking Policy

Compute proceeding cost-to-go and replenishment cost-to-go.
Choose optimal action by choosing the action which incurs the min. cost.

Vj+1

U3

V2

DEPOT
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Optimal Restocking Policy

Compute proceeding cost-to-go and replenishment cost-to-go.
Choose optimal action by choosing the action which incurs the min. cost.

Vj+1

V3 V-1

V2 Ut

H DEPOT

Gendreau, Salavati, Jabali, and Rei CIRRELT Optimal Restocking in the VRPSD Odysseus 2018 16 / 51



Optimal Restocking Policy

Compute proceeding cost-to-go and replenishment cost-to-go.
Choose optimal action by choosing the action which incurs the min. cost.

q Uj+1
q .
V3 V-1
V2 Ut
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Optimal Restocking Policy

Compute proceeding cost-to-go and replenishment cost-to-go.
Choose optimal action by choosing the action which incurs the min. cost.

Vj+1

Replenish
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Optimal Restocking Policy

Compute proceeding cost-to-go and replenishment cost-to-go.
Choose optimal action by choosing the action which incurs the min. cost.

Vj+1

Proceed l;b

H DEPOT

Gendreau, Salavati, Jabali, and Rei CIRRELT Optimal Restocking in the VRPSD

Vt-1

Odysseus 2018
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Recourse Policy: Optimal Policy

Optimal threshold 0;“}_?

By comparing proceed and replenish we can compute optimal thresholds as
follows:

PR trip ifg< 0;;

07 = min {q|proceed < replenish}, then
Kl 0,~-~,Q{ | J proceed otherwise

proceed :¢;, ;.. + Z Fi (G- §Z+l)p2+l+
kigy  <q
J+1
- ok k
F;. (q) = min Z [b + 2017ij+1 + Fij+1 (Q+q- gijﬂ )]pij+17
J

¢k =
k:.{ijJr1 >q

S
L k k
replenish : ¢y i, +c14,,, + kzl Fi,, (Q- fijﬂ)pijﬂ.
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Optimal Restocking Policy

Exact Algorithms to Tackle VRPSD

Integer L-shaped algorithm

Integer L-shaped algorithm as a general B&C framework is proposed by
Laporte and Louveaux (1993).

Gendreau et al. (1995), Laporte et al. (2002), and Jabali et al. (2014)...

Column Generation

B&P: Christiansen and Lysgaard (2004).
B&C&P: Gauvin et al. (2014).
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Optimal Restocking Policy Formulation

Two-stage Stochastic Integer Program with Recourse

minimize Y ¢z + Q(z) (3)
v i<j
subject to ) x1; = 2m, (4)
j=2
Yw+ Y wpy =2, k=2,...,n (5)
i<k k<j
s E(&
> yslsl-[2S ) s evpuyacisian-2)
vi,vjES Q
(6)
0<x <1, 2<i<j<n (7)
0<mxy; <2, j=2,...,n (8)
x = (xi5), integer 9)

where, Q(x) = i min{Q"!, Q*?}.
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Integer L-shaped Algoithm
Solution Method: Integer L-shaped Alg.(General B&C)

First Relaxation: Current Problem (CP?)

@ Replace Q(z) by © in (1).
® Bound © from below by L in (11).
© Relax subtour elimination and capacity constraints (4).

O Relax integrality requirements (7).

At Each lteration

® Solve relaxation.

® Add subtour elimination and capacity constraints (4) when violated.
©® Add LBF cuts (10) to improve lower bounds on O.

@ Branching to achieve integrality requirements (7).

O Add optimality cuts (11) when Q(z) > ©.
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e = e i
Solution Method: Integer L-shaped Alg.(General B&C)

CP : min
z,0

subject to

Zcijxij +0 (10)

i<j
(4), (5), (7), (8),
> xijSISkl—[%(&)] 2<|S% <n-2, (11)

V4,V5 eSk

L+ (0]~ L)( Z W;L(x) - PRI+ 1) <O pefa,B,v},
hePRY
(12)

L<© (13)
Z Tij < Z a:fj -1 . (14)

1<i<j 1<i<j

a:iszl
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Optimal Restocking Policy

List contains

Integer L-Shaped e 7
Algorithm

al
EEV

Choose next pendent node [¢———

yes
E—— fathom node

Introduce violated feasibil-
ity constraints and LBFs

ety pstiing e Integer
lyes

Add

no

cuts
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Optimal Restocking Policy Lower Bounding Scheme

An Exact Algorithm

Feasibility cuts

Remove infeasible routes by adding capacity and subtour elimination
constraints (CVRP package Lysgaard et al 2014).

Bounding Scheme for Fractional Solutions

Add valid inequalities that improve lower bound at fractional solutions
with certain structures

This requires to compute expected recourse cost of such fractional
solutions.

General Lower Bound

Compute a general lower bound L that improves optimality gap.
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Optimal Restocking Policy Lower Bounding Scheme

Literature Review

Bounding Scheme for Fractional Solutions

e Hjorring and Holt (1999) introduce the concept of partial route for
single-VRPSD (traditional, discrete, restricted failures)

e Laporte et al. (2002) generalize for multi-VRPSD (traditional,
continuous)

o Jabali et al. (2014) generalize the structure of partial routes
(traditional, continuous)

1 1 2
Sh U, Si
%0 o
o O
= o—o0—o0 00° 00 0—0—0 =
o

Chain Un\sktructured/Set Chain
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LT e
An Exact Algorithm

Bounding Scheme for Fractional Solutions

Add valid inequalities that improve lower bound at fractional solutions
with certain structures.

This requires to compute expected recourse cost of such fractional
solutions.

Fractional Solution

Fractional Solutions with certain structures are called partial routes.

1 1 2
Sh U, Si
%0 o
o _© ‘
= o—o0—0 00° 00 0—0—0 m
o ‘

,

Chain Unstructured Set Chain
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Optimal Restocking Policy Lower Bounding Scheme

An Exact Algorithm

Fractional Solution

Partial Routes proposed by Jabali et al. (2014).

s

. o T S
y o. %0 o
o}, %6 O 5 o o %,
B—0--0—00 © 00—0--0—00 ° olo—o--0—a
o ‘ o i
« topology
.0 o. O 0o o
o, %6 o %, %0 O
B—0--0—00 o0—0--0—00 © 00—0--0—a
o ‘ o ‘
: S [ topology
. P 0o o 0o o )
6 o 5 0 S .
B—o0 ——O—Q“‘O Oo 00—0---0—00 OO O\D—O‘ --0—=0
~ topology
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Optimal Restocking Policy Lower Bounding Scheme

An Exact Algorithm

Bounding Scheme for Fractional Solutions

Add valid inequalities that improve lower bound at fractional solutions
with certain structures.

This requires to compute expected recourse cost of such fractional
solutions.

Expected Recourse Cost

First: we model a partial route with « topology as an artificial route.

h = (DEPOT = v;,...,0; L. gy .,U,»],,v,»m,...,z;im = DEPOT)

]71,\, ‘ij—l+1" RN VY PR
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LT e
An Exact Algorithm: An Optimal Policy for VRPSD

Bounding Scheme for Fractional Solutions

This requires to compute expected recourse cost of such fractional
solutions.

Expected Recourse Cost

Conditional optimal cost-to-go from . ;, when v, is restricted to

vy, € U} can be computed as Fj, (s = (Lii,,9),5" = (vu;,4")):

Z Erwl (5, = (Uulvql =q- fﬁ] ))pfn +

kg <q
. o b+2 + "= "=Qrq-¢ .
Fi,(s=(4i,,9), 8" = (vu;,¢))=min k:§%>q[ o (8= (s 032 @0 = 8 o
Suy _
cl,i,, + CLul - Cik,ul + Z Eu+1(sl = (U1117q, = Q - fsl))l)ﬁl
k=1
- [ j\ . ~ \71\ / /
Fig(s = (g, @) = min Fi (s = (g, 9), 8 = (Vu, ). (15)
Vue €U,
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LT e
An Exact Algorithm

General Lower Bound

Compute a general lower bound L that improves optimality gap

The general lower bound L is defined by Laporte and Louveaux (1993) as
a feasible integer solution (i.e., m vehicle routes) with the least expected
recourse cost defined as follows

L=Q(z) < min{Q(x)|z is feasible }
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LT e
An Exact Algorithm

General Lower Bound

Compute a general lower bound L that improves optimality gap

Computation

We define a Mega partial route including all customers except one, then
L* = miQHQ(Mega) < L = Q(2) using bounding scheme.
Sh

71 - 2
SMega UMega SMega
) °o o
, o o
B o o o -00° 00 0 0 o——m
o
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LT e
An Exact Algorithm

General Lower Bound

Compute a general lower bound L that improves optimality gap

How we can use a Mega structure to compute L?

Define Mega as

5 T r

lz S (’Ul = VjysLsigslsigy e sbijy 15Uz, Vg = ’1)1).
for each vertex v..
Finally, a general lower bound L* can be computed as

* lz
L7 = min F, (@) - ZCPR

where, c{%R denotes the k™ least PR trip cost(1 < k <m) and prove that

L* <L, so L* is a general valid lower bound for Expected Recourse cost.
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Three Groups of Instances
@ Symmetric Instances.

® Asymmetric Instances.

© Instances generated by Louveaux and Salazar (2017).
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NI EITEINRETIEN  VRPSD Instances

Instance Generation

Symmetric Instances

Three demand ranges [1,5], [6,10], and [11,15] are considered, and
customers are assigned randomly to them.

Probabilities {0.1,0.2,0.4,0.2,0.1} are associated accordingly.
Number of runs=11*10*4=440.

Asymmetric Instances

Five demand ranges [1,5], [6,10], [11,15], [4,7], and [9,12] are
considered, and customers are assigned randomly to them.
Probabilities {0.1,0.2,0.4,0.2,0.1} are associated accordingly for first
three ranges and {0.4,0.3,0.2,0.1} for last two.

Number of runs=11*10*4=440.
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WITNEAEINEEIEN  Symmetric: VRP Performance Measures

Optimally solved inst., gap, and running time

Table: Result of running the optimal policy.

n m f Opt <1% Run(sec) Gap f Opt <1% Run(sec) Gap
20 2 0.90 10 10 13.90 0.00% 0.92 10 10 10.00 0.00%
30 2 090 10 10 6.40 0.00% 0.92 8 10 1.12  0.05%
40 2 0.90 10 10 15.60 0.00% 0.92 10 10 80.90 0.00%
40 3 0.90 5 9 713.20  0.30% 0.92 8 8  4991.38 0.39%
40 4 0.90 0 2 —-—— 245% 0.92 0 1 -—-- 3.82%
50 2 0.90 10 10 20.60 0.00% 0.92 9 9 1412.78 0.19%
50 3 0.90 4 7 1609.50 1.03% 0.92 4 8  8656.25 0.67%
50 4 0.90 2 2 331.00 3.68% 0.92 1 1 7775.00 3.26%
60 2 0.90 10 10 1017.00 0.00% 0.92 9 10 82.78 0.02%
60 3 0.90 3 7 2978.33 0.77% 0.92 1 4 757.00 2.14%
60 4 0.90 0 2 ——— 2.82% 0.92 0 1 —-—- 2.86%
Gendreau, Salavati, Jabali, and Rei CIRRELT Optimal Restocking in the VRPSD Odysseus 2018 34 /51



WITNEAEINEEIEN  Symmetric: VRP Performance Measures

Optimally solved inst., gap, and running time

Table: Result of running the optimal restocking policy.

n m f Opt <1% Run(sec) Gap f Opt <1% Run(sec) Gap
20 2 094 10 10 1.70 0.00% 0.96 10 10 60.60 0.00%
30 2 094 10 10 2134.30 0.00% 0.96 9 9 1261.89 0.18%
40 2 094 10 10 8.20 0.00% 0.96 9 10 683.22  0.00%
40 3 094 4 8 11504.25 0.81% 0.96 2 3 19371.50 1.17%
40 4 094 0 1 --- 3.01% 0.96 0 1 -—- 4.21%
50 2 094 10 10 44.20 0.00% 0.96 7 10 457.57 0.16%
50 3 094 3 8 1199.67 0.78% 0.96 1 4 1262.00 1.38%
50 4 094 0 2 -——- 2.50% 0.96 0 0 -—-- 3.61%
60 2 094 8 10 574.25 0.07% 0.96 7 10 1580.86 0.11%
60 3 094 1 3 1006.00 1.91% 0.96 1 2 32411.00 2.02%
60 4 094 0 2 --- 3.28% 0.96 1 1 9785.00 4.06%
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WIS ALINEESIEN  Asymmetric: VRP Performance Measures

Optimally solved inst., gap, and running time

Table: Result of running the optimal policy.

n m f Opt <1% Run(sec) Gap f Opt <1% Run(sec) Gap
20 2 0.90 10 10 51.90 0.00% 0.92 10 10 74.80 0.00%
30 2 090 10 10 4.30 0.00% 0.92 10 10 103.30  0.00%
40 2 0.90 10 10 8.10 0.00% 0.92 10 10 40.30 0.00%
40 3 090 5 9 228540 0.23% 0.92 7 8  4587.86 0.46%
40 4 0.90 1 3 2207.00 1.93% 0.92 1 2 238.00 2.71%
50 2 090 10 10 68.10 0.00% 0.92 10 10 318.60 0.00%
50 3 0.90 7 8 2883.14 0.79% 0.92 4 5 4153.75 1.04%
50 4 0.90 2 2 924550 3.13% 0.92 1 2 1478.00 2.49%
60 2 0.90 8 10 511.00 0.10% 0.92 9 10 728.22  0.05%
60 3 0.90 5 8  6968.40 0.21% 0.92 0 6 -—- 1.19%
60 4 0.90 1 1 11020.00 4.77% 0.92 0 1 -—— 3.26%
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WIS ALINEESIEN  Asymmetric: VRP Performance Measures

Optimally solved inst., gap, and running time

Table: Result of running the optimal restocking policy.

n m f Opt <1% Run(sec) Gap f Opt <1% Run(sec) Gap
20 2 094 10 10 0.30 0.00% 0.96 10 10 848.40 0.00%
30 2 094 10 10 365.40 0.00% 0.96 10 10 976.90 0.00%
40 2 094 9 10 184.89 0.02% 0.96 10 10 658.80  0.00%
40 3 094 4 9 3594.00 0.28% 0.96 2 6 21227.00 1.01%
40 4 094 0 2 --- 3.11% 0.96 0 1 -—- 2.89%
50 2 094 9 10 18.22 0.00% 0.96 10 10 4675.00 0.00%
50 3 094 6 8  6655.67 0.27% 0.96 1 3 1720.00 1.27%
50 4 094 0 1 -—-- 3.28% 0.96 0 0 -—- 3.7%
60 2 094 8 10 1693.88 0.05% 0.96 9 10 2866.00 0.09%
60 3 094 2 5 11888.00 0.96% 0.96 1 4 6095.00 1.43%
60 4 094 0 3 -—-- 3.35% 0.96 0 0 --= 3.59%
Gendreau, Salavati, Jabali, and Rei CIRRELT Optimal Restocking in the VRPSD Odysseus 2018 37 /51



WIS ALINEESIEN  Asymmetric: VRP Performance Measures

Overall Performance

Table: Performance of Optimal Restocking Policy.

Integer L-Shaped Algorithm
opt. sol. time gap

51.59% 1407.42 0.90%
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WITWEAEINEETIE  Symmetric: Savings Measures

Savings: Savl(savings on total cost) and Sav2(savings on
recourse cost)

Table: Optimal restocking policy vs classical

nom f Savl Sav2 f Savl Sav2

20 2 0.90 0.42% 40.57% 0.92 0.86% 45.16%
30 2 090 0.33% 31.21% 0.92 0.26% 40.78%
40 2 090 0.08% 43.11% 0.92 0.31% 47.34%
40 3 090 0.16% 36.69% 0.92 0.30% 35.98%
40 4 090 --- -—= 092 --- -—=

50 2 0.90 0.03% 49.58% 0.92 0.27% 56.73%
50 3 0.90 0.09% 46.08% 0.92 0.10% 43.3™%
50 4 0.90 0.12% 26.61% 0.92 0.12% 23.61%
60 2 0.90 0.14% 54.11% 0.92 0.19% 54.05%
60 3 090 0.12% 30.33% 0.92 0.26% 76.15%
60 4 090 --- -—= 092 --- -—=
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WITWEAEINEETIE  Symmetric: Savings Measures

Savings: Savl(savings on total cost) and Sav2(savings on
recourse cost)

Table: Optimal restocking policy vs classical

nom f Savl Sav2 f Savl Sav2

20 2 094 1.78% 53.47% 096 2.61% 55.38%
30 2 094 0.71% 44.39% 0.96 1.39% 53.85%
40 2 094 048% 55.08% 0.96 1.22% 62.90%
40 3 094 0.68% 38.94% 096 1.67% 57.43%
40 4 094 --- -—= 096 --- -—=

50 2 0.94 0.68% 59.56% 0.96 0.95% 64.37%
50 3 094 0.35% 53.32% 0.96 2.33% 64.37%
50 4 094 --- -—= 096 --- -——=

60 2 094 0.39% 55.01% 0.96 0.97% 67.57%
60 3 094 0.12% 36.01% 0.96 1.21% 56.21%
60 4 094 --- -—— 096 2.24% 39.80%
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\ITWEAEINEEETIEM  Asymmetric: Savings Measures

Savings: Savl(savings on total cost) and Sav2(savings on
recourse cost)

Table: Optimal restocking policy vs classical

n m f Savl Sav2 f  Savl Sav2

20 2 090 0.27% 2797% 0.92 0.86% 42.68%
30 2 0.90 0.33% 38.92% 0.92 0.20% 39.72%
40 2 090 0.12% 39.13% 0.92 0.07% 48.11%
40 3 090 0.13% 46.04% 0.92 0.40% 40.22%
40 4 090 0.53% 31.11% 0.92 0.37% 35.28%
50 2 0.90 0.16% 49.76% 0.92 0.24% 56.14%
50 3 0.90 0.09% 35.75% 0.92 0.87% 58.17%
50 4 090 0.16% 24.06% 0.92 0.43% 43.94%
60 2 090 0.07% 48.68% 0.92 0.24% 56.14%
60 3 090 0.17% 37.89% 092 --- —-—-

60 4 090 0.13% 39.10% 092 --- ---
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\ITWEAEINEEETIEM  Asymmetric: Savings Measures

Savings: Savl(savings on total cost) and Sav2(savings on
recourse cost)

Table: Optimal restocking policy vs classical

nom f Savl Sav2 f Savl Sav2
20 2 094 1.07% 4548% 0.96 3.10% 57.52%
30 2 094 0.46% 43.24% 096 1.58% 52.68%
40 2 094 0.36% 59.29% 0.96 1.18% 64.97%
40 3 094 0.61% 43.66% 096 2.10% 48.42%
40 4 094 --- -—= 096 --- -—=
50 2 094 0.20% 56.19% 0.96 0.80% 58.47%
50 3 094 0.83% 57.10% 0.96 1.82% 56.66%
50 4 094 --- -—= 096 --- -——=
60 2 094 027% 50.97% 0.96 0.83% 66.41%
60 3 094 056% 41.98% 0.96 1.13% 62.16%
60 4 094 --- -—= 096 --- -—=
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WITEAEINEETIEN  Louveaux and Salazar-Gonzalez (2017)

Louveaux and Salazar-Gonzalez (2017)

Instance Generation

Identical demands:

3 realizations: £ € {4,5,6}, Pr: {0.25,0.5,0.25}

9 realizations: £ €{1,2,3,4,5,6,7,8,9},

Pr: {0.04,0.08,0.12,0.16,0.2,0.16,0.12, 0.08, 0.04}

F;(g) = min

~ k k
Proceed: " Fj1(G—&f1)P)an+
k:gﬁlgij

Z [A + 2007]'_'.1 + F}'+1(Q + (j - 5‘;?:+1)]p§+17

ki£h  >q

s
: k k
Replenlsh A+ Coj +Coj+1 —Cjj+1 t Z Fj+1(Q - fj+1)pj+1.
k=1
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WITEAEINEETIEN  Louveaux and Salazar-Gonzalez (2017)

Comparison with Louveaux and Salazar-Gonzalez (2017)

Table: Result for A =0

Instance Our result Louveaux and Salazar (2017)
Instance  Veh.  f  Scen. H Node Run(min) Gap Routing  Recourse L H Node Routing Recourse ~ Gap Run(min) L
E031-09h 2 0.90 3 12 0.00  0.00 332 0.752989  0.000000 325 332 0.7530 0 0.00 0.0000
E031-09h 2095 3 115 0.00  0.00 334 1.295551  0.000000 2035 334 1.2956 0 0.02  0.0000
E031-09h 2 0.90 9 2447 0.17  0.00 334 3.673848  0.000000 3632 334 3.6738 0 0.04 0.0000
E031-09h 2095 9 11923 6.28  0.00 334 10.525120  0.000000 36654 334 10.5251 0 1.30 0.0000
E031-09h 3 085 3 305 0.03  0.00 358 0.947237  0.000000 17950 358 0.9472 0 0.28 0.0000
E031-09h 3 0.90 3 3303 0.90  0.00 364 0.065544  0.000000 94518 364 0.0655 0 4.07  0.0000
E031-09h 3 085 9 22825 21.08 0.00 361 6.155214  0.000000 | 248044 361 6.1552 0 18.17  0.0000
E031-09h 3 0.90 9 92237 5h.  0.64 361 11.783918  0.000000 || 604022 363  10.1294 2325 5h. 0.0000
E051-05e 2 0.90 3 13 0.00 0.00 441 0.000234  0.000000 3260 441 0.0002 0 0.06 0.0000
E051-05e 2 0.95 3 139 0.01  0.00 441 0.311264  0.000000 3889 441 0.3113 0 0.10 0.0000
E051-05e 2 0.90 9 3967 129 0.00 441 2.006072  0.000000 10709 441 2.0061 0 0.30 0.0000
E051-05e 2 0.95 9 51292 5h. 0.59 441 7.082580  0.000000 | 314798 441 7.0826 0.130 5h. 0.0000
E051-05e 3  0.85 3 17 0.01  0.00 459 0.002388  0.000000 6557 459 0.0000 0 0.16 0.0000
E051-05e 3 0.90 3 7 0.01  0.00 459 0.049098  0.000000 3449 459 0.0491 0 0.07  0.0000
E051-05e 3  0.85 9 1489 2.44  0.00 459 1.550320  0.000000 22525 459 1.5503 0 0.62  0.0000
E051-05e 3 0.90 9 80279 5h. 0.21 460 5.629006  0.000000 || 303297 460 5.6290 0 72.44 0.0000
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Comparison with Louveaux and Salazar-Gonzalez (2017)

Table: Result for A =0

Instance Our result Louveaux and Salazar (2017)
Instance  Veh. f  Scen. H Node Run(min) Gap Routing Recourse L H Node Routing Recourse ~ Gap Run(min) L
E076-07s 2 0.90 3 1 0.00 0.00 549 0.004528  0.000000 757 549 0.0045 0 0.03  0.0000
E076-07s 2 0.95 3 187 0.06  0.00 550 0.163882  0.000000 7869 550 0.1639 0 0.34 0.0000
E076-07s 2 0.90 9 897 0.27  0.00 550 0.815011  0.000000 8522 550 0.8150 0 0.27  0.0000
E076-07s 2 0.95 9 47267 5h. 0.35 550 4.799920  0.000000 || 425613 550 4.7999 0 252.76  0.0000
E076-07s 3 0.85 3 251 0.65 0.00 567 0.125934  0.000000 43343 567 0.1259 0 2.75 0.0000
E076-07s 3 0.90 3 4033 27.59  0.00 568 1.266042  0.000000 || 213546 568 1.2660 0 36.14 0.0000
E076-07s 3 0.85 9 22870 5h.  0.14 568 1.952144  0.000000 | 440721 568 1.9521 0 107.42  0.0000
E076-07s 3 0.90 9 20039 5h.  0.50 570 3.249967  0.000000 || 579000 571 3.3077 1.029 5h. 0.0000
E101-08e 2 0.90 3 1 0.00 0.00 640 0.001000  0.000000 2819 640 0.0010 0 0.19  0.0000
E101-08e 2 0.95 3 46525 5h. 0.07 640 1.731616  0.000000 83765 640 17316 0 29.32  0.0000
E101-08e 2 0.90 9 44929 169.55  0.00 640 1.304019  0.000000 34436 640 1.3040 0 13.05 0.0000
E101-08e 2 0.95 9 26237 5h. 0.83 640 6.119062  0.000000 | 172619 640 6.1191 0.851 5h. 0.0000
E101-08e 3 0.85 3 2036 9.40  0.00 655 0.354229  0.000000 9025 655 0.3542 0 0.98 0.0000
E101-08e 3 0.90 3 26418 5h.  0.05 657 1.296878  0.000000 40442 657 1.2969 0 9.07 0.0000
E101-08e 3 0.85 9 8483 5h. 0.59 655 4.483187  0.000000 || 292928 657 1.9841 0 105.42  0.0000
E101-08e 3 0.90 9 8172 5h. 1.36 657 9.554738  0.000000 | 267310 658 9.5547 1.545 5h. 0.0000
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Comparison with Louveaux and Salazar-Gonzalez (2017)

Table: Result for A =100

Instance Our result Louveaux and Salazar (2017)
Instance  Veh. 7 Scen. | Node Run(min) Gap Routing Recourse L || Node Routing Recourse Gap Run(min) L
E031-09h 2 0.90 3 169 0.01  0.00 334 0.036972  0.003998 669 334 0.0370 0 0.01  0.0322
E031-09h 2 0.95 3 3265 0.37  0.00 334 11.169266  5.190493 1129 334 11.1693 0 0.01  9.7750
E031-09h 2 0.90 9 59511 5h. 3.04 334 25.855218  8.598236 4989 334  25.8552 0 0.06 21.8767
E031-09h 2 0.95 9 74436 5h. 9.75 334 67.120808  30.996017 46716 334 67.1208 0 218 55.7272
E031-09h 3 0.85 3 1471 023 0.00 358 3.573217  0.000002 52467 358 3.5732 0 1.63  0.0003
E031-09h 3 0.90 3 3821 113 0.00 364 0.452652  0.050483 || 101055 364 0.4527 0 6.67  0.3827
E031-09h 3 0.85 9 127177 5h. 3.74 364 23.823043  3.143872 || 541383 364  23.8230 0 158.13 19.8215
E031-09h 3 0.90 9 78789 5h. 9.58 366 54.263840  12.249430 || 575050 364 55.1384 2570 5h. 45.4655
E051-05¢ 2 090 3 17 000 000 441 0002620 0000026 | 2733 441 00026 O 006 00024
E051-05e 2 0.95 3 14766 25.34  0.00 441 3.595178  0.712359 2852 441 3.5952 0 0.07 3.2511
E051-05e 2 0.90 9 46241 5h.  2.29 441 16.760808  3.383876 14095 441 16.7608 0 0.43 14.5815
E051-05¢ 2 0.95 9 26849 5h.  7.07 442 51.976878 18.781663 || 368184 441 52,5861 0.530 5h. 449723
E051-05e 3 0.85 3 20 0.01  0.00 459 0.062053  0.000000 8771 459 0.0000 0 0.32  0.0000
EO051-05¢ 3 0.90 3 107 0.03  0.00 459 0.342615  0.000271 8710 459 0.3426 0 0.22  0.2906
E051-05¢ 3 0.85 9 49377 5h.  1.66 465 9.691321  0.232376 20158 459  10.1148 0 0.97  8.4706
EO051-05¢ 3 0.90 9 27171 5h. 7.54 465 40.333816  3.920572 || 375607 460  40.6002 0 117.98  34.6055
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Comparison with Louveaux and Salazar-Gonzalez (2017)

Table: Result for A = 100

Instance Our result Louveaux and Salazar (2017)
Instance  Veh.  f  Scen. || Node Run(min) Gap Routing Recourse L || Node Routing Recourse Gap Run(min) L
E076-07s 2 0.90 3 1 0.00 0.00 549 0.049578  0.000000 1433 549 0.0496 0 0.06  0.0002
E076-07s 2 0.95 3 25005 197.20  0.00 550 2.762314  0.129071 4344 550 2.7623 0 0.17 25724
E076-07s 2 0.90 9 32914 5h.  0.96 550 8.695714  1.162683 17355 550 8.6957 0 091  7.7989
E076-07s 2 0.95 9 20332 5h. 5.28 551 43.766938  14.337217 2079 557  43.2132 0 0.09 37.5621
E076-07s 3 0.85 3 1417 3.89  0.00 567 1.238007  0.000000 90188 568 0.0098 0 9.19  0.0000
E076-07s 3 0.90 3 15759 5h. 0.69 574 0.434985  0.000000 | 472268 570 0.4141 0 189.78  0.0035
E076-07s 3 0.85 9 23601 5h.  1.37 573 5.347527  0.029557 || 583500 571 3.0801 0.496 5h. 27316
E076-07s 3 0.90 9 15355 5h.  5.61 574 31.493586  2.006243 || 313769 579  25.1061 2.687 5h. 21.8722
E101-08e 2 0.90 3 1 0.00 0.00 640 0.013355  0.000000 1296 640 0.0134 0 0.10  0.0000
E101-08e 2 0.95 3 16934 5h.  0.66 645 0.384135  0.018200 || 176070 645 0.3841 0.657 5h.  0.3482
E101-08e 2  0.90 9 20995 5h.  1.32 643 6.560891  0.481734 || 184880 643 6.5609 0.654 5h. 43275
E101-08e 2  0.95 9 13665 5h.  4.65 644 38.262388 10.511748 || 186210 645 354935 1.467 5h. 30.2575
E101-08e 3  0.85 3 16055 5h. 0.01 655 4.586534  0.000000 | 101256 657 0.0016 0 45.68  0.0000
E101-08e 3  0.90 3 18444 5h. 0.55 663 0.340071  0.000000 | 334797 661 0.6416 0.333 5h.  0.0022
E101-08e 3 0.85 9 13544 5h. 2.33 664 11.504967  0.002695 | 217234 659  16.5437 2.873 5h.  1.3399
E101-08e 3 0.90 9 13786 5h. 5.85 660 41.696028  0.630127 || 145040 682 16.3244 4.211 5h. 13.8368
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Conclusions and Perspectives




Conclusion and perspectives

Stochastic vehicle routing is a rich and promising
research area.

Much work remains to be done in the area of recourse
definition.

SVRP models and solution techniques may also be useful
for tackling problems that are not really stochastic, but
which exhibit similar structures

Up to now, very little work on problems with stochastic
travel and service times, while one may argue that travel
or service times are uncertain in most routing problems!

Correlation between uncertain parameters is possibly a
major stumbling block in many application areas, but
almost no one seems to work on ways to deal with it.

Stochastic VRP : An Overview and
an Exact Method for Optimal Restocking
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