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Abstract

In this paper we study a generalization of the Directed Rural Postman Problem

(DRPP) where not all arcs requiring a service have to be visited provided that a

penalty is paid if not served. The problem looks for a tour visiting the selected set of

service arcs while minimizing both traversing and penalty costs. The problem is known

as Directed Profitable Rural Postman Problem (DPRPP). We propose a matheuristic

that uses the optimal solution of a problem relaxation to identify different subsets of

service arcs on which to formulate and solve a sequence of DRPPs. A second heuristic

approach is then applied as final refinement. The method uses as input the best

solution found so forth and exploits the structure of a branch and cut approach where

subtours are eliminated through the insertion of cuts heuristically determined and that

may exclude feasible solutions. Finally, a branch and cut approach that makes use of

subtours elimination cuts introduced in a of ”lazy way” is presented. The method

is enhanced by a heuristic routine solving suproblems in nodes of the solution tree.

All proposed methods have been tested on benchmark instances from the literature

and compared to state of the art algorithms. Results show that heuristic methods are

extremely effective frequently outperforming existing algorithms, whereas the exact

method finds the optimal solution for all but three open instances in less than one

hour.

Keywords: Directed Profitable Rural Postman Problem, Arc Routing with profits,

Matheuristic.

1 Introduction

Many studies appeared in the literature about the famous Traveling Salesman Problem (TSP)

and its variations (see Gutin and Punnen [23]) and about its multi vehicle generalizations

1



(see Toth and Vigo [27] for a survey on Vehicle Routing Problems (VRP)). The general

aim of these problems is to find one (or more) optimal tour(s) to serve all or a selected

group of customers. In these problems, customer demands are located at vertices of a graph.

In Arc Routing Problems (ARPs) demands are located along the edges instead that at

vertices. Although the difference between these two classes of problems seems to be minor,

the structure of ARPs is different and specialized solution methods need to be devised for

these problems (see Dror [16], Eiselt et al. [17] and [18] for surveys and Corberán and Prins

[12] for an annotated bibliography).

In this paper we analyze a generalization of the Directed Rural Postman Problem (DRPP)

(see Eiselt et al. [18]) where some required arcs may not be served provided that a penalty

is paid for each of them. The problem is defined on a directed graph G(V,A), where V =

{0, ..., n} is the set of nodes (node 0 represents the depot), and A = {(i, j) | i ̸= j, i, j ∈ V }
is the set of directed arcs. At each arc (i, j) ∈ A is associated a traveling cost cij. Let

R ⊆ A be the set of arcs that require a service (service arcs). We assume that directed

paths in G exist between every pair of nodes that are terminal nodes of arcs in R. A penalty

pij is assigned to each arc (i, j) ∈ R that represents the cost that has to be paid if the

corresponding service arc is not selected in the optimal solution. The problem looks for a

tour starting and ending at the depot so that the total cost, given by the sum of traveling

costs and total penalty paid for non traversing some service arcs, is minimized. This problem

was first introduced by Guastaroba et al. [22] under the name of Shipper’s Lane Selection

Problem (SLSP), and recently reformulated by Archetti et al. [4] who called it Directed

Profitable Rural Postman Problem (DPRPP) since minimizing traveling and penalty costs

can be reformulated as maximizing the difference between profit gained serving required arcs

and traveling costs.

The problem belongs to the class of arc routing problems with profits. Whereas a large

literature exists for node routing problems with profits (see Feillet et al. [20] and Vansteen-

wegen et al. [28] for a survey about the TSP with profits and the team orienteering problem,

respectively), still very few contributions can be found on their arc routing counterpart. In

[15], Deitch and Ladany introduce the one-period Bus Touring Problem (BTP) in which

profits are placed on nodes and arcs. In this problem the profits are non-negative attractive-

ness values and the objective is to maximize the total attractiveness of the tour by selecting

a subset of nodes (sites) to be visited and arcs (scenic routes) to be traveled subjected to

constraints on touring time, cost and total distance. Feillet et al. [19] introduce the Prof-

itable Arc Tour Problem (PATP). The problem objective is to maximize the profit located

on arcs minus the travel costs using a fleet of unlimited vehicles with no capacity constraint.

No depot is considered and the number of times profit is available on arcs is limited. The

use of more vehicles is due to an upper bound on the length of each tour. More recently,

2



Aráoz et al. [1] introduce the Privatized Rural Postman Problem (PRPP). The problem can

be seen as the undirected version of the DPRPP and looks for a tour starting and ending at

the depot while maximizing the difference between the profits gained serving required arcs

and the traversing costs. The authors study polyhedral properties of the problem identifying

some dominance relations. Later on, Aráoz et al. [2] rename the problem Prize-collecting

Rural Postman Problem. They identify upper bounds solving iteratively relaxed models

with a small number of inequalities and adding violated cuts through exact separation pro-

cedures. They also provide lower bounds for the problem generating feasible solutions using

the 3T heuristic by Fernández et al. [21]. They introduce a problem formulation using two

sets of binary variables one indicating when an edge is traversed and served the first time,

one indicating the deadheading traversal and show that the number of times an edge can be

traversed in an optimal solution is never higher than 2. The latter is a known result also for

the Rural Postman Probem (RPP) (see Christofides et al. [9]). The RPP objective is to find

a tour, starting from the depot, crossing all the requested edges in a set R and minimizing

the total cost. RPP was first introduced by Orloff [26] and is known to be NP-hard but for

some special cases as when graph induced by the requested edges is connected. Note that,

once selected the service arcs to be visited, the DPRPP reduces to a directed RPP.

Starting from the prize-collecting RPP described in Aráoz et al. [1], many authors in-

troduce different variants of the problem; see, for instance, the clustered prize-collecting

ARP by Aráoz et al. [3] and the windy clustered prize-collecting ARP by Corberán et al.

[13]. More recently, Black et al. [7] study the time-dependent prize-collecting Arc Routing

Problem (TD-PARP) inspired to the PRPP but with the addition of real constraints. The

graph is directed and traversing costs depend on the time they are crossed. Moreover, the

problem allows for more requests between the same two nodes.

Motivation

The directed profitable RPP (DPRPP) studied in this paper finds application in the domain

of the transportation services procurement where companies need to decide which customers

to serve directly and which assign to external operators paying an outsourcing cost. In

Guastaroba et al. [22] the problem has been first introduced as the problem of a shipper that

has to decide which lanes (service arcs) to pick out for a direct service with its own vehicle,

and which to assign conveniently at external carriers paying an outsourcing cost. Since lanes

outsourcing is made through an auction, the problem objective is the minimization of the

sum of traversing costs and outsourcing costs plus the fixed cost of auction set-up. The

authors provide a mathematical formulation using binary instead of integer variables, thus

allowing a single crossing for each arc. Other works can be found in this application area

almost all referring to node routing problems. See for instance Chu [11] who first analyzes

3



the problem of deciding how many private vehicles to employ in truckload mode (and then

defining their routing) and how many external carriers to use in less than truckload mode

when the customers demand is more than the available vehicle capacity. A slightly different

problem formulation is also analyzed by Côté and Potvin [14] who propose a tabu search

algorithm to solve it.

Contribution

The DPRPP is an NP-hard problem being a generalization of the directed RPP (DRPP).

This motivates the study of heuristic approaches to solve it. Archetti et al. [4] introduce an

effective tabu search algorithm with the addition of an ex-post ILP-refinement. They also

provide a set of benchmark instances for the problem many of which have not been solved

to optimality up to now.

This paper provides different contributions. We introduce a tighter problem formulation

than that proposed in [4]. We use it to develop a branch-and-cut algorithm where subtours

elimination constraints are introduced in a ”lazy way”, i.e. only when integer solutions

containing subtours are determined in the search tree. The method is further enhanced

by the introduction of a routine that solves optimally the directed rural postman problem

on subset of service arcs selected heuristically. The routine is called iteratively after a

predefined number of iterations, and uses information provided by the optimal solutions of

the continuous relaxation at nodes of the branch and bound tree to pick out service arcs on

which to solve DRPPs. The exact method results to be highly efficient allowing to find the

optimal solution, within a time limit of one hour, for 19 out of the 22 instances not solved

to optimality yet by Archetti et al. [4] on a comparable PC.

The selection of service arcs to be visited can be seen as a first critical step to solve the

DPRPP. Once identified a set of service arcs to be visited, a directed Rural Postman problem

needs to be solved. We show how the optimal solution of the problem relaxation obtained

removing subtours elimination constraints can be used to identify subsets of ”promising”

service arcs to be visited. In particular, we propose a matheuristic that exploits information

provided by this relaxation to identify subsets of service arcs on which to formulate and

solve to optimality Directed Rural Postman problems. Each DRPP is solved on a restricted

graph induced by the selected service arcs. The procedure consists of two main routines,

one considering subsets of service arcs of increasing size and the other one of decreasing

size. Finally, a refinement is introduced through a heuristic method that receives as input

the best solution found so forth and exploits the branch and cut structure of a common

MILP solver. The method gets quick convergence through the introduction of heuristic

cuts that may exclude feasible solutions of the original problem. More precisely, all the

times an integer solution is found in the branch and bound solution tree, the heuristic
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eliminates smallest subtours as in an exact approach, whereas subtours with a size larger than

a predefined number of nodes are excluded in a heuristic way. In the latter case connectivity

cuts are inserted forcing the visit to the selected subtours. The resulting constraints are not

guaranteed to be valid inequalities for the problem.

The article is organized as follows. In Section 2 the mathematical formulation of the

problem is proposed with some simple properties. We also describe the mathematical for-

mulation used to optimally solve the directed RPP when a set of service arcs to be visited is

selected (auxiliary problem). Section 3 is devoted to solution algorithms description, whereas

in Section 4 we test both our exact algorithm and the heuristic approaches on benchmark

instances and compare their performance with state of the art algorithms. In Section 5 some

conclusions and future developments are drawn.

2 Mathematical Formulation

We start describing the integer linear programming formulation for the DPRPP. The model

uses O(|V |2) integer variables x to indicate how many times each arc is traversed in the

optimal solution and other O(|V |2) binary variables y to select arcs to serve. Finally |V |
binary variables z are used to formulate subtours elimination constraints:

xij ≥ 0 number of times arc (i, j) is traversed in the optimal solution (i, j) ∈ A

yij :=

{
1 if arc (i, j) is served in the optimal solution

0 otherwise;
(i, j) ∈ R

zj :=

{
1 if node j is visited in the optimal solution

0 otherwise.
j ∈ V

The problem can be formulated as follows:
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(DPRPP) min
∑

(i,j)∈A cijxij +
∑

(i,j)∈R pij(1− yij) (1)

s. to:
∑

i∈V \{j} xij =
∑

i∈V \{j} xji j ∈ V (2)

xij ≥ yij (i, j) ∈ R (3)

zj ≤
∑

i∈V \{j} xij ≤ (|R|+ 1)zj j ∈ V (4)

z0 ≥ zj j ∈ V \ {0} (5)∑
i/∈P

∑
j∈P xij ≥

∑
j∈P zj

|P | P ⊆ V \ {0}, P ̸= ∅ (6)

xij ≥ 0 integer (i, j) ∈ A (7)

yij ∈ {0, 1} (i, j) ∈ R (8)

zj ∈ {0, 1} j ∈ V (9)

The objective function (1) minimizes the sum of traveling costs and penalties paid for

all service arcs not selected. Constraints (2) are the so called in-degree and out-degree

constraints and impose the equivalence between the number of arcs entering and leaving

each node j ∈ V . Constraints (3) imply that arc (i, j) ∈ R can be served (yij = 1), if and

only if it has been traversed (xij ≥ 1). Constraints (4) control values of zj variables. If at

least one arc is entering node j, then variable zj is forced to 1 (right inequality), otherwise zj

is forced to zero (left inequality). Constraints (5) impose the selection of variable z0 when any

other node is visited thus requiring, through constraint (4), that arcs have to enter and leave

the depot. Constraints (6) prevent the generation of isolated cycles. Finally, constraints

(7),(8),(9) define integer and binary conditions.

Note that, as in classical profitable problems, objective function (1) can be reformulated

as follows:

max
∑

(i,j)∈R

pijyij −
∑

(i,j)∈A

cijxij −
∑

(i,j)∈R

pij.

With respect to the formulation proposed in Archetti et al. [4] we add a variable z0 associ-

ated to the depot, the set of valid inequalities (5) that forces to pass from the depot when

at least a node is visited, and the lower bounds in inequalities (4). These constraints are not

necessary, but make stronger the problem continuous relaxation and the relaxation obtained

removing connectivity constraints (6). Finally, an alternative formulation for the DPRPP

could be obtained generalizing the model proposed by Aráoz et al. [1]. In this case two sets

of variables are required both defined on the complete set A of arcs. The first set consists

of binary variables that indicate the first time arcs (if any) are traversed and served in the

optimal solution, whereas the second set consists of integer variables counting the additional

times such arcs are traversed.
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Figure 1: Upper bounds on arc traversals.

Let R∗ ⊆ R be the set of service arcs selected in an optimal solution of the DPRPP and

x∗
ij the optimal value of variable xij, (i, j) ∈ A. The following proposition is trivially true:

Proposition 1 In an optimal solution of the DPRPP, x∗
ij ≤ |R∗| if (i, j) ∈ R and x∗

ij ≤
|R∗|+ 1 otherwise.

Instance depicted in Figure 1A shows a DPRPP instance with three service arcs (1, 2), (2, 3),

(2, 5) (shown in bold lines). Assuming that penalties and costs are such that all service arcs

are selected in an optimal solution, then variable x12 will take value |R∗| = |R| = 3. Figure

1B shows the opposite case, in which arc (1, 2) does not belong to R. In this case, variable

x12 will take value |R∗|+ 1, with |R∗| = 2.

Let us consider the DPRPP relaxation obtained excluding subtours elimination con-

straints (6). From now on, we will refer to such a relaxation as to problem RELAX. We

indicate as RREL the set of service arcs selected by the optimal solution of problem RELAX.

We have already defined R∗ ⊆ R as the set of service arcs selected in an optimal solution of

the DPRPP. The following proposition holds:

Proposition 2 In general, R∗ is not included in RREL.

Proof Trivially, an isolated service arc (i, j) (i.e. a service arc not adjacent to any other

service arcs) with pij < cij will never be selected by the optimal solution of problem RELAX.

On the contrary it will make part of the DPRPP optimal solution if arc (i, j) is necessary to

ensure connectivity to other service arcs visited by the optimal integer solution. �
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In spite of this negative result, we will show how, the set RREL usually contains promising

service arcs, that is service arcs that will be likely visited in an optimal solution of the

DPRPP. In the following section, we will describe a heuristic algorithm that selects different

combinations of service arcs in RREL to and then formulates and solves to optimality the

resulting instance of the Directed Rural Postman Problem.

Given a subset R̄ ⊆ R of service arcs, let Ḡ(V̄ , Ā) be the graph induced by R̄, where

the set of nodes V̄ ⊆ V is the set of endpoints of arcs in R̄ plus the depot (if not already

included), and the set of arcs is given by the set R̄ plus arcs between every pair of nodes

in V̄ . A cost cij is assigned to each arc in Ā as follows: if the arc (i, j) ∈ R̄ then cij is its

original traversing cost, otherwise cij is the cost of the shortest path connecting i to j in the

original graph G. The directed Rural Postman Problem visiting all required arcs of set R̄ in

a tour at minimum cost can be formulated as follows:

(AUX) min
∑

(i,j)∈Ācijxij (10)

subject to:
∑

i∈V̄ \{j} xji =
∑

i∈V̄ \{j} xij j ∈ V̄ (11)

xij ≥ 1 (i, j) ∈ R̄ (12)∑
i∈K

∑
j /∈K xij ≥ 1 K ⊆ V̄ \ {0}, K ̸= ∅ (13)∑

j∈V̄ \{0} x0j ≥ 1 (14)

xij ≥ 0 integer (i, j) ∈ Ā (15)

Each variable xij is non negative integer and represents the number of times arc (i, j) ∈ Ā

is traversed. Objective function (10) minimizes the sum of traversing costs. Constraints (11)

are the classical in-degree and out-degree constraints. Constraints (12) ensure the traversing

of the set of selected service arcs. Constraints (13) are common connectivity constraints

which can be used since all nodes in graph Ḡ insist on at least one arc in R̄. Constraint (14)

guarantees that at least one arc has to leave the depot. Finally, constraints (15) define the

nature of variables xij. From now on we will refer to this formulation of the directed RPP

as to the auxiliary problem (AUX). Alternative formulations of the problem can be found in

Ball and Magazine [5] and Christofides et al. [10].

Auxiliary problem will be largely used both in the exact approach and in the heuristic

methods as external routine to find good feasible solutions given a promising subset of

service arcs to visit. For its solution we implement a branch and cut approach. First

the subproblem without constraints (13) is optimally solved. Note that constraint (14) is

not necessary in AUX formulation, but it makes stronger the problem relaxation obtained

eliminating constraints (13). The constraints (13) are added when an integer solution is

found in the search tree, i.e. they are added in a ”lazy way”. We will better describe the

concept of ”lazy way” when introducing our branch and cut method.
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3 Solution Algorithms

In this section we describe the two heuristic procedures and the branch and cut approach

proposed for solving the DPRPP.

3.1 Exact solution algorithm

Our branch and cut algorithm is different from that proposed in [4] that uses the max-flow

algorithm by Boykov and Kolmogorov [8] as separation procedure for inequalities (6) and

applies it starting at the root node. Instead of solving continuous relaxation and inserting

violated subtours elimination constraints directly at the root node, our algorithm starts by

solving to optimality the RELAX problem. As soon as an integer solution is found in the

branch and bound search tree, isolated tours are looked for and, if found, they are prevented

by adding the inequalities (6) on the subsets P identified by the isolated cycles. A solution

becomes feasible when no more isolated tours are found in the integer solution, that is, no

more cuts will be discovered on that tree branch. Constraints added to an integer solution

are usually weak in a polyhedral sense, since they only remove a single infeasible integral

point. For this reason they are used in a ”lazy way” by the branch and cut algorithm with

the purpose of checking the feasibility of the integral solutions found along the tree. In our

case the ”lazy constraints” added do not only eliminate current infeasible solution, but also

exclude all integral solutions that contain such tours. We believe that the performance of

our branch and cut method highly depends on the time saving obtained solving RELAX

problem and then introducing subtours elimination constraints in a lazy way instead of

solving separation algorithm for subtours elimination from scratch as in [4]. Our method

avoids the introduction of the high number of constraints that the second method has to

deal with since the beginning.

Moreover, in order to improve our exact method performance, the auxiliary problem

AUX is solved on subsets of service arcs determined using information provided by solutions

at nodes of the search tree. A heuristic routine takes the optimal solution of the continuous

relaxation at a node of the search tree, and rounds the value of variables associated to service

arcs (i.e. all yij variables with fractional value) to the closest integer. Selected service arcs

are then used as input to problem AUX. Note that given a set of required arcs the solution

of the auxiliary problem AUX will provide the best way to serve them. This may possibly

include the selection of additional service arcs located on the shortest path connecting nodes

of the reduced graph on which the auxiliary problem is formulated. If the solution found

by solving the auxiliary problem is better than the actual incumbent solution, the latter is

updated making bounding operations possibly more effective. This heuristic routine is called

iteratively along the whole search tree.
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3.2 Heuristic solution algorithms

Most of heuristic methods provided in the literature for arc routing problems transform

problem instances into node routing instances. We propose two solution algorithms that

directly use arc routing formulation of the problem. The first approach is a matheuristic

where at each iteration a new subset of service arcs to be visited is selected and then a

directed rural postman problem is solved to optimality. Combining heuristics and exact

methods appears to be a very promising alternative in solving hard combinatorial problems,

we refer interested readers to Maniezzo et al. [25]. The second procedure is a final refinement

that tries to improve the best solution found by the matheuristic using the structure of a

branch and cut search, but getting quick convergence through the introduction of subtours

elimination constraints that may exclude feasible solutions.

Relaxation Based Heuristic

The first method solves problem RELAX and uses different combinations of arcs in RREL

to construct DRPP instances that are then solved to optimality using the auxiliary problem

AUX. We call this algorithm Relaxation Based Heuristic (RBH) and report its pesudocode

in Algorithm 1.

At Step 1 of Algorithm 1 the values r∗ and w∗ are initialized to the case where no service

arcs are selected: the objective function value w∗ is set equal to the sum of all penalties,

whereas tour r∗ is void. Then the optimal solution (x∗
REL, y

∗
REL) of problem RELAX is

determined and the set of service arcs RREL visited by such a solution identified (Step 2). If

the optimal solution of problem RELAX does not select any arcs, then initialization values

at Step 1 are optimal for the DPRPP and the algorithm stops providing them. This is also

the case if the optimal solution of problem RELAX contains a unique tour closed to the

depot (Steps 3-5). Otherwise, the three subroutines ISA, IDA and IIA are called and the

best tour found r∗ with total cost w∗ is returned at the end.

Pseudo code of the Initial Solution Algorithm (ISA) is described in Algorithm 2. At Step

1 this subroutine finds a first feasible solution solving a DRPP using as required arcs the

complete set RREL of service arcs selected by the optimal solution of problem RELAX.

The optimal solution of problem RELAX can have isolated tours. If an isolated tour

contains only one service arc, we call such an arc an isolated service arc. To be selected in

the optimal solution of problem RELAX an isolated service arc must have a penalty larger

than the traversing cost of the corresponding tour. The selection of isolated service arcs in

an optimal solution of the DPRPP depends on how convenient they remain after imposing

their connection to the depot tour. Whereas it may happen that an isolated service arc is

selected in the optimal solution of the DPRPP, we notice that this is usually not the case.
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Algorithm 1 Relaxation Based Heuristic (RBH)

Require: Graph G=(V,A), set R of service arcs. Maximum computational time Tmax.

Ensure: a feasible tour r∗ with total cost w∗.

1: Set r∗ := ∅ and total cost w∗ :=
∑

(i,j)∈R pij.

2: Solve problem RELAX. Let (x∗
REL, y

∗
REL) be its optimal solution and let RREL ⊆ R be

the subset of service arcs selected in (x∗
REL, y

∗
REL).

3: if y∗REL = 0 then return (r∗, w∗).

4: if (x∗
REL, y

∗
REL) contains a unique cycle r̄ closed on the depot with total cost w̄ then

5: Set r∗ := r̄ and total cost w∗ := w̄.

6: return (r∗, w∗)

7: else

8: (r
′
, w

′
) := ISA((x∗

REL, y
∗
REL), RREL).

9: if w
′
< w∗ then set w∗ := w

′
, r∗ := r

′
.

10: (r
′
, w

′
) := IDA((x∗

REL, y
∗
REL), RREL).

11: if w
′
< w∗ then set w∗ := w

′
, r∗ := r

′
.

12: (r
′
, w

′
) := IIA((x∗

REL, y
∗
REL)).

13: if w
′
< w∗ then set w∗ := w

′
, r∗ := r

′
.

14: return (r∗, w∗).

15: end if

Algorithm 2 Initial Solution Algorithm - ISA((x∗
REL, y

∗
REL), RREL)

1: Solve problem AUX using set RREL as required arcs. Let r be the tour found and w its

total cost.

2: Let R̃ be the set of isolated service arcs selected in (x∗
REL, y

∗
REL).

3: if R̃ ̸= ∅ then

4: Solve problem AUX using set RREL := RREL \ R̃. Let r̃ be the tour found and w̃ its

total cost.

5: end if

6: if w̃ < w then set w := w̃, r := r̃.

7: return (r, w).

So, we decide (Steps 2–5) to eliminate all isolated service arcs from set RREL and then solve

problem AUX on the remaining set. Algorithm 2 terminates providing the best between the

two solutions found.

Routines IDA and IIA represent the two main phases of the Relaxation Based Heuristic.

Their pseudo codes are illustrated in Algorithms 3 and 4.

Isolated subtours are selected in the optimal solution of RELAX problem when the sum
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Algorithm 3 Improvement by Decreasing Algorithm - IDA((x∗
REL, y

∗
REL))

1: Set r = ∅ and w =
∑

(i,j)∈R pij.

2: Let ñ be the # of isolated tours in (x∗
REL, y

∗
REL) with more than 2 service arcs.

3: for i = 1, ..., ñ do

4: Let Ri be the set of service arcs belonging to tour i. Set R′
REL := RREL \Ri.

5: Solve problem AUX using set R′
REL as required arcs. Let ri be its solution and wi its

total cost.

6: if wi < w then set w := wi, r := ri.

7: end for

8: Let r0 be the tour passing through the depot in (x∗
REL, y

∗
REL) and w0 its total cost.

9: if w0 < w then set w := w0, r := r0.

10: return (r, w).

of traversing costs is lower than the sum of penalties. Nevertheless, their actual convenience

for the optimal solution depends on the cost to connect them to the depot. To evaluate the

convenience not to serve an isolated tour found by the RELAX problem optimal solution,

Algorithm IDA removes, in turn, the service arcs of each isolated tour from the set RREL.

At each iteration of the for cycle (Steps 3–7 of Algorithm 3) a new set of required arcs

Ri is determined and then eliminated from RREL. The resulting set of service arcs R′
REL is

provided as required arcs to construct a DRPP instance (problem AUX) solved to optimality.

If no convenient paths exist to connect isolated tours to the depot, it may happen that the

tour passing through the depot in the optimal solution of problem RELAX is already optimal

for the original problem. Algorithm IDA takes this into account in Step 8.

Subroutine Improvement by Increasing (IIA) aims at evaluating the convenience to con-

nect each isolated tour with the tour passing through the depot. This should represents a

measure of the convenience to insert it into the optimal solution. At this aim during each

iteration of the first for cycle (Steps 4–7) the service arcs selected by an isolated tour are

added to those (if any) in the tour passing through the depot and used as input to problem

AUX. For each set Ri ∪R0 of required arcs defined at Step 5, we keep the objective function

value (total cost) of the solution found by the problem AUX and in Step 8 we sort isolated

tours in non decreasing order of such values. Then, following such an order, the iterations of

the second for cycle starting at Step 10, evaluate solution obtained by increasingly includ-

ing the set of service arcs of each isolated tour, one after the other, to the set of service arcs

of the tour passing through the depot. Thus, at each iteration a new instance of problem

AUX is solved receiving as input an increasing set of required arcs represented by the set

of service arcs considered in the previous iteration plus the arcs of the isolated tour under

consideration.

12



Algorithm 4 Improvement by Increasing Algorithm - IIA((x∗
REL, y

∗
REL))

1: Set r = ∅ and w =
∑

(i,j)∈R pij.

2: Let ñ be the # of isolated tours in (x∗
REL, y

∗
REL) with more than 2 service arcs.

3: Let R0 be the set of service arcs selected by the tour passing through the depot in

(x∗
REL, y

∗
REL).

4: for i = 1, ..., ñ do

5: Let Ri be the set of service arcs selected by tour i. Solve problem AUX using set

Ri ∪R0. Let ri be the solution tour and wi its total cost.

6: if wi < w then set w := wi, r := ri.

7: end for

8: Sort sets {Ri, i = 1, ..., ñ} in non decreasing order of solution costs {wi, i = 1...ñ}.
9: Set R̄ := R1 ∪R0.

10: for i = 2 to ñ− 1 do

11: Solve problem AUX using set R̄ := R̄ ∪ Ri. Let r̄ be its solution tour and w̄ its total

cost.

12: if w̄ < w then set w := w̄, r := r̄.

13: end for

14: return (r, w).

Post-processing of RBH

As final post-processing the whole Algorithm 1 is repeated changing the solution found

by the RELAX problem at Step 2 through the insertion of a constraint forcing the selection

of a larger number of service arcs by a defined percentage γ, as follows:

∑
(i,j)∈R

xij ≥ |RREL| ∗ (1 + γ).

If γ|RREL| > |R| − |RREL|, then the right hand side is set to (1 − γ)(|R| − |RREL|). If

|RREL| = |R| post processing is not applied.

Heuristic Cuts Search (HCS)

The best solution found by procedure RBH is used as input to an algorithm that exploits

the structure of a branch and cut algorithm but inserts cuts for subtours elimination in a

heuristic manner. Resulting cuts may not be valid inequalities thus excluding integer feasible

solutions. In particular, at each node of the branch and bound tree when an integer solution

is available the procedure identifies isolated subtours. If the cardinality of the set P of nodes

making part of the subtour is larger than ⌈α |A|
⌊ |A|
|V | ⌋

⌉ the following cut is introduced:
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∑
i∈P

∑
j /∈P xij ≥ 1 ∀ P ⊆ V \ {0}, P ̸= ∅ (16)

In all the other cases, exact violated cuts are added.

Introduction of an inequality (16) prevents the creation of a particular isolated tour

forcing its visit (right hand side of each constraint (16) is a constant). This may cause the

exclusion of some problem feasible integer solutions. The rationale for their introduction is

that larger isolated tours are more likely to belong to an optimal solution and thus they are

forced directly without identification of the valid violated cut. The algorithm stops when a

time limit is met. As our branch and cut algorithm also this heuristic makes an intensive

use of the heuristic routine solving problem AUX on predefined sets of service arcs at nodes

of the search tree. We call this procedure Heuristic Cuts Search (HCS).

4 Experimental analysis

In this section we present the results obtained testing our algorithms on the set of bench-

mark instances provided by Archetti et al. [4] that can be downloaded at the web site

http://www.unibs.it/sites/default/files/ricerca/allegati/13004DPRPP.zip. We

reorganize these benchmark instances in the following sets:

• Set 1: instances DPRPP ϵ δ valXA originally come from those by Benavent et al. [6]

modified by introducing penalties. Parameters (ϵ, δ) define the interval [ϵcij, δcij] in

which penalty pij for each arc (i, j) is randomly generated and are set equal to (1.0, 2.0),

(1.5, 2.5) and (2.0, 3.0), respectively. The total number of instances is equal to 30.

• Set 2: instances DPRPP ϵ δ egl-eY-A and DPRPP ϵ δ egl-sY-A, originally taken from

Li and Eglese [24], are obtained setting parameters (ϵ, δ) equal to (1.0, 2.0), (1.5, 2.5)

and (2.0, 3.0), respectively. This gives rise to 24 instances altogether.

• Set 3: 26 instances DPRPP P.

• Set 4: 36 instances DPRPP D.

• Set 5: 36 instances DPRPP G.

• Set 6: 20 instances DPRPP R.

Sets 3–6 come from Aráoz et al. [2], where the original profits of these problems have been

used as penalties for the DPRPP. At the website http://www.ing.unibs.it/~orgroup/
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instances.html we provide new best known values and new optimal solutions we get on

these benchmark instances.

All tests have been performed using a Laptop with 1.73 Ghz processor in Windows Seven

operating system. Algorithms have been coded in C++ and models implemented in ILOG

Concert Technology 2.0 and solved using CPLEX 10.1.

4.1 Exact results

In this section we show the results obtained by our exact procedure. We set a computational

time limit of 3600 seconds after which the branch and cut search is stopped and the best

feasible solution found as well as its percentage gap with respect to the best lower bound

are provided as output.

In Tables 1-6 for each set of instances we report three variants of our exact procedure. The

first one, named ”Basic”, uses the same problem formulation as that proposed in Archetti

et al. [4]. The second one, named ”New”, uses our formulation of the DPRPP that includes

new inequalities. Finally, the last one, named ”New + Aux”, uses formulation New along

with the heuristic routine that solves the problem AUX iteratively at nodes of the search tree

and uses as starting initial solution the payment of all penalties. In the last variant, after

some preliminary tests we have decided to set to 10 seconds the maximum time available

to solve the auxiliary problem (AUX) at a tree node. Tests have shown that, on average,

CPLEX can optimally solve this problem in less than 10 seconds. Moreover, we set to 2%

the percentage gap between incumbent integer solution and best bound, under which the

auxiliary problem is not solved anymore. Preliminary tests have shown that, on average, it

is difficult that a solution of this problem can improve the best incumbent under this gap

value. Finally, to limit the number of times the auxiliary problem is solved, we set a CPLEX

condition that calls the heuristic only if the current iteration is a multiple of 100.

All Tables 1-6 have the same structure. The first column provides instance name, whereas

columns ”|V |” and ”|R|” indicate the size of solved instance, namely the number of nodes

and of service arcs, respectively. Column ”Opt.” shows the optimal solution value of an

instance if it is found by at least one variant; the entry is highlighted in bold style when a

new (not previously known) optimal solution value is found. If at least one variant finds a

solution value that improves the best known value the entry in column ”Opt” is in italic font.

Columns ”Time” and ”# cuts” report the time in seconds required by each variant to get the

optimal solution and the number of cuts added to prevent isolated tours. If a variant does

not find the optimal solution within the computational time limit of 3600 seconds in column

”Time” we report (into brackets) the best integer solution found and its percentage gap

from the best lower bound. These values into brackets are also reported when the algorithm

goes out of memory. In such a case the computing time is put before the bracket, whereas
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a symbol ”*” is put in the name of the instance when all tested variants terminates out of

memory.

Table 1 shows the results on Set 1 of instances. DPRPP ϵ δ valXA are very easy in-

stances: their solution always requires less than 1 second. Note that in variants New and

New+Aux the number of added cuts is lower than in the formulation Basic. Since these in-

stances are extremely easy the introduction of a heuristic routine solving DRPPs seem to be

meaningless. In Table 2 are shown the results for the instances in Set 2. DPRPP ϵ δ egl-eY-

A and DPRPP ϵ δ egl-sY-A instances are among the most difficult ones. Our algorithm has

been able to find the optimal solution for 6 previously open instances (bold entries). In this

set two instances are still not solved to optimality (namely instances DPRPP 1.0 2.0 egl-

s2-A and DPRPP 1.5 2.5 egl-s1-A) but, in one case, formulation New+AUX found a new

best known integer solution value. Comparing the Basic variant with the New+AUX vari-

ant, one can note that both the average computational time and the average number of

cuts are lower for the second one. Thus, the introduction of new constraints and of a

heuristic routine solving the auxiliary problem (AUX) seem to help Branch and Cut algo-

rithm. Table 3 shows the results obtained on instances of the Set 3. If we exclude instances

DPRPP ALBAIDAANoRPP and DPRPP ALBAIDABNoRPP that are the most difficult

problems in the set, the other ones are still quite easy instances solved, on average, in less

than 1 second and always requiring a limited number of cuts. Table 4 reports solutions found

for Set 4 (instances DPRPP D). This set shows instances with a large deviation in terms of

number of nodes and service arcs. The complexity of such instances increases with their size

from the first to the last one. Our algorithm finds the optimal solution using all the three

variants for all the instances and has been able to close all the four open instances. Variant

New has reduced the computational time by about 7 times with respect to variant Basic and

halved the number of cuts that have to be inserted to get optimal solution. Comparing the

columns ”# cuts” for variants New and New + Aux can be noted that in some instances

the solution of the auxiliary problem seem to be helpfull. In Table 5 are shown results on

Set 5 (instances DPRPP G). As for DPRPP D instances, size and complexity increase from

the first to last one. Our algorithm performs well always finding the optimal solution but

for one instance and closing 7 out of 8 previously open instances. Variants New and New +

Aux both behave quite well almost halving the average computational time and the average

number of cuts with respect to variant Basic. Finally, Table 6 shows the results on Set 6 (in-

stances DPRPP R) where variant New provides the best performance immediately followed

by variant New + Aux. Our algorithm has been able to find the optimal solution for all

the instances, closing two previously optimally unsolved instances. In conclusion, our exact

algorithm, in its various variants, has been able to solve all instances but 3. The experimen-

tal analysis shows that the introduction of new constraints on variables zi create a stronger
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formulation that significantly help Branch and Cut resolution. The use of a heuristic routine

solving directed rural postman problems on subsets of arcs (problem AUX) seem to help

algorithm performance. It is evident how the use of this heuristic does not seem to heavly

affect the average computational time. Besides, in those instances not solved to optimality

it has allowed the exact algorithm to find the best known solution values.

4.2 Heuristic Results

In this section we analyze the performance of our heuristic approaches. After some prelim-

inary tests, we have decided to set parameter γ for heuristic RBH to 0.30. The maximum

computing time assigned to heuristic HCS has been set to 50 seconds. To limit the number of

times the auxiliary problem is solved, we set a CPLEX condition that calls the corresponding

heuristic only if the current iteration is a multiple of 10. A maximum computing time of

10 seconds is assigned to the solution of each AUX problem and the percentage gap under

which this problem is not solved anymore is set to 2% as for our exact algorithm.

In the following tables we compare the performance of the tabu search algorithm and the

ILP-refinement (indicated as ILP-ref. in the tables) proposed by Archetti et al. [4] with our

procedures RBH and HCS, the latter tested with α = 0 and α = 0.05.

Tables 7–12 have all the same structure. The first column indicates the name of the

instance (reduced to the identification number). Column ”Best Known” shows the best

known solution value for each instance, this corresponds to the optimal solution value in

all but three instances identified by symbol ”(*)”. Column ”Gap (%)” provides for each

heuristic the percentage gap of its solution value (UB) from the best known value (BK)

as follows UB−BK
UB

(computed as in Archetti et al. [4] in order to guarantee a comparison).

Column ”Time” indicates the computational time in seconds required by each algorithm.

This means that to correctly evaluate the time of the ILP-refinement that receives as input

the solution found by the Tabu search, one has to sum the computational time of the two

procedures. Thus, differently from Archetti et al. [4], the ”Time” column of ILP-refinement

is the sum of tabu search and ILP-refinement computing times. Similarly, the computational

time for our heuristic HCS that receives as input the best solution found by procedure RBH

is computed as the sum of the times required by the two procedures. Column ”Routine”

shows which routine of the method RBH has found the best final solution. If the name of

the routine has ”(γ)” at the end, it means that the best solution has been found by this

routine during the post-processing phase of RBH procedure. For algorithm HCS column ”#

cuts” provides the number of heuristic cuts used and column ”# AUX” shows the number

of time the auxiliary problem AUX has been solved and the number of times its solution has

improved the best incumbent integer solution (value into brackets).

Table 7 presents results for Set 1. Procedure HCS finds the optimal solution for all

17



instances with both α = 0.05 and α = 0. In particular, almost all the optimal solutions have

been found by routine ISA. Algorithm RBH has always required a computational time lower

than 1 second finding an average error almost null, whereas tabu search and ILP-refinement

show a performance slightly worse with an average computational time of about 13 and 16

seconds respectively. Table 8 shows heuristic results on instances of Set 2. In this set tabu

search performs very well providing an average gap equal to 0.28, whereas ILP-refinement

has no effect at all. Our algorithm RBH performs very well but in few instances. Average

error provided by RBH is strongly reduced by HCS. It is worth noticing that HCS(α = 0.05)

behaves better than HCS(α = 0) where all subtours (also the smallest) are forced to be

visited. This seems to confirm our idea that smallest subtours selected by problem RELAX

are more unlikely to belong to the optimal solution. To conclude, on this set of instances,

the performance of HCS and that of ILP-refinement are comparable. On instances of the Set

3 (see Table 9) our algorithm HCS with α = 0.05 outperforms state of the art algorithms.

Its average computational time and the average gap are equal to 4.55 seconds and 0.08%,

respectively, whereas the corresponding values increase to 19.84 seconds and to 0.38% for

ILP-refinement by Archetti et al. [4]. In Table 10 heuristic results on instances of the Set 4

are presented. Also in this set our algorithm outperforms state of art algorithms. HCS with

α = 0.05 requires, on average, 32 seconds and gets an average gap equal to 0.29%, whereas

ILP-refinement shows an average gap equal to 0.71% and requires about 40 seconds. In Set

5 (see Table 11) the average time of our HCS with α = 0.05 is higher by about 8 seconds

than that of ILP-refinement, whereas its percentage gap is 0.12% instead of 0.18%. It is

worth noticing that, for these instances, HCS is able, on average, to strongly improve results

obtained by RBH in less than 3 seconds. Finally, better results can be found on Set 6 in

Table 12, where both RBH and HCS algorithms get an average gap better than tabu search

and ILP-refinement, respectively and requiring computational times significantly lower. The

average computing time of our HCS is lower than 1 second with an average gap equal to

0.25% against the 40 seconds required by the ILP-refinement getting an average gap of 0.46%.

In Table 13 we report a summary comparing all results for ILP-refinement and HCS. The

first column indicates the set of instances, then for each algorithm we provide the average

(Avg.) and the maximum (Max) gap and the average and the maximum time computed out

of all instances in each set. On all solved instances our algorithms provides a better average

performance both in terms of time and percentage gap.

Table 14 illustrates the number of times each routine in RBH obtains the best solution.

For each routine (i.e. for each row) we provide the number of times it gets the best value (final

solution) for algorithm RBH (first column) and for the refinement HCS (second column),

respectively. For instance, routine ISA gets the best solution value provided by RBH in 69

instances out of the 172 available, whereas for HCS this happens 56 times, that is in 13 out

18



of 69 times HCS was able to improve the best result obtained by ISA. These 13 instances

are included in the 85 where HCS got the best final result improving the result obtained by

RBH.

Finally, in Table 15 we provide the number of times each algorithm finds the best solution

value in each set of instances, and show into brackets the number of times such values coincide

with the best know solution values. If the best known value is reached by more than one

algorithm we count it for all of them. For instance, the first row of DPRPP ϵ δ val results

shows that tabu search and ILP-refinement get 21 best heuristic solutions that coincide with

the best known values while RBH and HCS find 28 and 30 best solutions corrisponding to

best known values, respectively. To conclude, HCS performance is very good and RBHis an

easy and fast matheuristic able to find promising solutions in some sets of instances even

better than those obtained by more complicated meta-heuristic algorithms as the tabu search

used as benchmark.
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Tabu Search - ILP-ref. RBH - HCS (α=0.05)

Gap Time Gap Time

Instances Avg. Max Avg. Max Avg. Max Avg. Max

DPRPP ϵ δ val 0.08 0.47 16.33 55.86 0.00 0.00 0.41 1.20

DPRPP ϵ δ egl 0.29 2.74 70.22 404.43 0.28 1.65 75.04 378.46

DPRPP P 0.38 1.97 19.84 117.58 0.08 1.96 4.55 54.60

DPRPP D 0.71 2.89 39.82 123.14 0.29 1.89 31.71 269.02

DPRPP G 0.18 2.89 9.29 53.78 0.12 2.22 17.87 101.04

DPRPP R 0.46 1.36 39.14 124.22 0.25 1.52 0.54 2.20

All instances 0.35 2.89 30.48 404.43 0.17 2.22 21.67 378.46

Table 13: Summary Table

RBH HCS (α=0.05)

ISA 69 56

IDA 48 14

IIA 13 12

ISA (γ) 13 2

IDA (γ) 20 2

IIA (γ) 9 1

HCS - 85

Total 172 172

Table 14: Performance analysis of RBH routines and HCS

# Tabu Search ILP Ref. RBH HCS (α=0.05)

Set 1 - DPRPP ϵ δ val 30 21 (21) 21 (21) 28 (28) 30 (30)

Set 2 - DPRPP ϵ δ egl 24 18 (16) 18 (16) 10 (9) 21 (19)

Set 3 - DPRPP P 26 15 (15) 15 (15) 10 (10) 25 (25)

Set 4 - DPRPP D 36 15 (15) 17 (17) 10 (10) 31 (31)

Set 5 - DPRPP G 36 31 (31) 31 (31) 15 (15) 34 (34)

Set 6 - DPRPP R 20 6 (6) 10 (7) 7 (6) 15 (14)

All instances 172 106 (104) 112 (107) 80 (78) 156 (153)

Table 15: Comparison with benchmark

5 Conclusions

In this paper we analyze a generalization of the Directed Rural Postman problem where not

all arcs requiring a service has to be visited provided that a penalty is paid for those not

served. This generalization is called Profitable Directed Rural Postman problem.

We propose a branch and cut algorithm and two heuristic methods. The exact algorithm

introduces cuts in a lazy way and this has allowed to close all but three open benchmark

problems available in the literature. Heuristics behave very well outperforming state of the

art algorithms in many sets of instances. The core of the first procedure is the solution of
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Directed Rural Postman Problems constructed on subsets of service arcs previously selected

by the optimal solution of a problem relaxation. The second heuristic procedure is a quite

general method based on a branch and cut structure exploiting heuristic cuts that may

eliminate feasible solutions. We believe that the main ideas behind these two heuristic

algorithms deserve to be further developed also for other arc routing problems.
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