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Abstract

In this paper we study a generalization of the Directed Rural Postman Problem
(DRPP) where not all arcs requiring a service have to be visited provided that a
penalty is paid if not served. The problem looks for a tour visiting the selected set of
service arcs while minimizing both traversing and penalty costs. The problem is known
as Directed Profitable Rural Postman Problem (DPRPP). We propose a matheuristic
that uses the optimal solution of a problem relaxation to identify different subsets of
service arcs on which to formulate and solve a sequence of DRPPs. A second heuristic
approach is then applied as final refinement. The method uses as input the best
solution found so forth and exploits the structure of a branch and cut approach where
subtours are eliminated through the insertion of cuts heuristically determined and that
may exclude feasible solutions. Finally, a branch and cut approach that makes use of
subtours elimination cuts introduced in a of ”lazy way” is presented. The method
is enhanced by a heuristic routine solving suproblems in nodes of the solution tree.
All proposed methods have been tested on benchmark instances from the literature
and compared to state of the art algorithms. Results show that heuristic methods are
extremely effective frequently outperforming existing algorithms, whereas the exact
method finds the optimal solution for all but three open instances in less than one

hour.

Keywords: Directed Profitable Rural Postman Problem, Arc Routing with profits,
Matheuristic.
1 Introduction

Many studies appeared in the literature about the famous Traveling Salesman Problem (TSP)

and its variations (see Gutin and Punnen [23]) and about its multi vehicle generalizations



(see Toth and Vigo [27] for a survey on Vehicle Routing Problems (VRP)). The general
aim of these problems is to find one (or more) optimal tour(s) to serve all or a selected
group of customers. In these problems, customer demands are located at vertices of a graph.
In Arc Routing Problems (ARPs) demands are located along the edges instead that at
vertices. Although the difference between these two classes of problems seems to be minor,
the structure of ARPs is different and specialized solution methods need to be devised for
these problems (see Dror [16], Eiselt et al. [17] and [18] for surveys and Corberan and Prins
[12] for an annotated bibliography).

In this paper we analyze a generalization of the Directed Rural Postman Problem (DRPP)
(see Eiselt et al. [18]) where some required arcs may not be served provided that a penalty
is paid for each of them. The problem is defined on a directed graph G(V, A), where V =
{0,...,n} is the set of nodes (node 0 represents the depot), and A = {(i,7) | i # j,i,7 € V}
is the set of directed arcs. At each arc (i,j) € A is associated a traveling cost ¢;;. Let
R C A be the set of arcs that require a service (service arcs). We assume that directed
paths in G exist between every pair of nodes that are terminal nodes of arcs in R. A penalty
pi; is assigned to each arc (4,j) € R that represents the cost that has to be paid if the
corresponding service arc is not selected in the optimal solution. The problem looks for a
tour starting and ending at the depot so that the total cost, given by the sum of traveling
costs and total penalty paid for non traversing some service arcs, is minimized. This problem
was first introduced by Guastaroba et al. [22] under the name of Shipper’s Lane Selection
Problem (SLSP), and recently reformulated by Archetti et al. [4] who called it Directed
Profitable Rural Postman Problem (DPRPP) since minimizing traveling and penalty costs
can be reformulated as maximizing the difference between profit gained serving required arcs
and traveling costs.

The problem belongs to the class of arc routing problems with profits. Whereas a large
literature exists for node routing problems with profits (see Feillet et al. [20] and Vansteen-
wegen et al. [28] for a survey about the TSP with profits and the team orienteering problem,
respectively), still very few contributions can be found on their arc routing counterpart. In
[15], Deitch and Ladany introduce the one-period Bus Touring Problem (BTP) in which
profits are placed on nodes and arcs. In this problem the profits are non-negative attractive-
ness values and the objective is to maximize the total attractiveness of the tour by selecting
a subset of nodes (sites) to be visited and arcs (scenic routes) to be traveled subjected to
constraints on touring time, cost and total distance. Feillet et al. [19] introduce the Prof-
itable Arc Tour Problem (PATP). The problem objective is to maximize the profit located
on arcs minus the travel costs using a fleet of unlimited vehicles with no capacity constraint.
No depot is considered and the number of times profit is available on arcs is limited. The

use of more vehicles is due to an upper bound on the length of each tour. More recently,



Aréoz et al. [1] introduce the Privatized Rural Postman Problem (PRPP). The problem can
be seen as the undirected version of the DPRPP and looks for a tour starting and ending at
the depot while maximizing the difference between the profits gained serving required arcs
and the traversing costs. The authors study polyhedral properties of the problem identifying
some dominance relations. Later on, Ardoz et al. [2] rename the problem Prize-collecting
Rural Postman Problem. They identify upper bounds solving iteratively relaxed models
with a small number of inequalities and adding violated cuts through exact separation pro-
cedures. They also provide lower bounds for the problem generating feasible solutions using
the 3T heuristic by Fernandez et al. [21]. They introduce a problem formulation using two
sets of binary variables one indicating when an edge is traversed and served the first time,
one indicating the deadheading traversal and show that the number of times an edge can be
traversed in an optimal solution is never higher than 2. The latter is a known result also for
the Rural Postman Probem (RPP) (see Christofides et al. [9]). The RPP objective is to find
a tour, starting from the depot, crossing all the requested edges in a set R and minimizing
the total cost. RPP was first introduced by Orloff [26] and is known to be NP-hard but for
some special cases as when graph induced by the requested edges is connected. Note that,
once selected the service arcs to be visited, the DPRPP reduces to a directed RPP.
Starting from the prize-collecting RPP described in Ardoz et al. [1], many authors in-
troduce different variants of the problem; see, for instance, the clustered prize-collecting
ARP by Ardoz et al. [3] and the windy clustered prize-collecting ARP by Corberan et al.
[13]. More recently, Black et al. [7] study the time-dependent prize-collecting Arc Routing
Problem (TD-PARP) inspired to the PRPP but with the addition of real constraints. The
graph is directed and traversing costs depend on the time they are crossed. Moreover, the

problem allows for more requests between the same two nodes.

Motivation

The directed profitable RPP (DPRPP) studied in this paper finds application in the domain
of the transportation services procurement where companies need to decide which customers
to serve directly and which assign to external operators paying an outsourcing cost. In
Guastaroba et al. [22] the problem has been first introduced as the problem of a shipper that
has to decide which lanes (service arcs) to pick out for a direct service with its own vehicle,
and which to assign conveniently at external carriers paying an outsourcing cost. Since lanes
outsourcing is made through an auction, the problem objective is the minimization of the
sum of traversing costs and outsourcing costs plus the fixed cost of auction set-up. The
authors provide a mathematical formulation using binary instead of integer variables, thus
allowing a single crossing for each arc. Other works can be found in this application area

almost all referring to node routing problems. See for instance Chu [11] who first analyzes



the problem of deciding how many private vehicles to employ in truckload mode (and then
defining their routing) and how many external carriers to use in less than truckload mode
when the customers demand is more than the available vehicle capacity. A slightly different
problem formulation is also analyzed by Coté and Potvin [14] who propose a tabu search

algorithm to solve it.

Contribution

The DPRPP is an NP-hard problem being a generalization of the directed RPP (DRPP).
This motivates the study of heuristic approaches to solve it. Archetti et al. [4] introduce an
effective tabu search algorithm with the addition of an ex-post ILP-refinement. They also
provide a set of benchmark instances for the problem many of which have not been solved
to optimality up to now.

This paper provides different contributions. We introduce a tighter problem formulation
than that proposed in [4]. We use it to develop a branch-and-cut algorithm where subtours
elimination constraints are introduced in a "lazy way”, i.e. only when integer solutions
containing subtours are determined in the search tree. The method is further enhanced
by the introduction of a routine that solves optimally the directed rural postman problem
on subset of service arcs selected heuristically. The routine is called iteratively after a
predefined number of iterations, and uses information provided by the optimal solutions of
the continuous relaxation at nodes of the branch and bound tree to pick out service arcs on
which to solve DRPPs. The exact method results to be highly efficient allowing to find the
optimal solution, within a time limit of one hour, for 19 out of the 22 instances not solved
to optimality yet by Archetti et al. [4] on a comparable PC.

The selection of service arcs to be visited can be seen as a first critical step to solve the
DPRPP. Once identified a set of service arcs to be visited, a directed Rural Postman problem
needs to be solved. We show how the optimal solution of the problem relaxation obtained
removing subtours elimination constraints can be used to identify subsets of ”promising”
service arcs to be visited. In particular, we propose a matheuristic that exploits information
provided by this relaxation to identify subsets of service arcs on which to formulate and
solve to optimality Directed Rural Postman problems. Each DRPP is solved on a restricted
graph induced by the selected service arcs. The procedure consists of two main routines,
one considering subsets of service arcs of increasing size and the other one of decreasing
size. Finally, a refinement is introduced through a heuristic method that receives as input
the best solution found so forth and exploits the branch and cut structure of a common
MILP solver. The method gets quick convergence through the introduction of heuristic
cuts that may exclude feasible solutions of the original problem. More precisely, all the

times an integer solution is found in the branch and bound solution tree, the heuristic



eliminates smallest subtours as in an exact approach, whereas subtours with a size larger than
a predefined number of nodes are excluded in a heuristic way. In the latter case connectivity
cuts are inserted forcing the visit to the selected subtours. The resulting constraints are not
guaranteed to be valid inequalities for the problem.

The article is organized as follows. In Section 2 the mathematical formulation of the
problem is proposed with some simple properties. We also describe the mathematical for-
mulation used to optimally solve the directed RPP when a set of service arcs to be visited is
selected (auxiliary problem). Section 3 is devoted to solution algorithms description, whereas
in Section 4 we test both our exact algorithm and the heuristic approaches on benchmark
instances and compare their performance with state of the art algorithms. In Section 5 some

conclusions and future developments are drawn.

2 Mathematical Formulation

We start describing the integer linear programming formulation for the DPRPP. The model
uses O(]V]?) integer variables x to indicate how many times each arc is traversed in the
optimal solution and other O(|V|?) binary variables y to select arcs to serve. Finally |V

binary variables z are used to formulate subtours elimination constraints:

x;; > 0 number of times arc (¢,7) is traversed in the optimal solution (i,7) € A

1 if arc (4,7) is served in the optimal solution .
Yij = : (1,j) € R
0 otherwise;
1 if node j is visited in the optimal solution ,
Zj 1= _ jevVv
0 otherwise.

The problem can be formulated as follows:



(DPRPP) min Z(i,j)eA CijTij + E(i,j)eRpij(l — Yij) (1)
s. to: doiev\ii) i = Dien\ () i jev (2)

Tij 2> Yij (4,7) € R (3)

2 < Yiengyy Tis < (1R[ + 1)z jev (4)

0> 5 jev\{o) (5)

Zigp ZjeP Tij 2 ZJGDT = PCVA\{0}, P # 0 (6)

z;; > 0 integer (i,7) € A (7)

vi; € {0,1} (1,7) € R (8)

z € {0,1} jEV (9)

The objective function (1) minimizes the sum of traveling costs and penalties paid for
all service arcs not selected. Constraints (2) are the so called in-degree and out-degree
constraints and impose the equivalence between the number of arcs entering and leaving
each node j € V. Constraints (3) imply that arc (4,j) € R can be served (y;; = 1), if and
only if it has been traversed (z;; > 1). Constraints (4) control values of z; variables. If at
least one arc is entering node 7, then variable z; is forced to 1 (right inequality), otherwise z;
is forced to zero (left inequality). Constraints (5) impose the selection of variable zy when any
other node is visited thus requiring, through constraint (4), that arcs have to enter and leave
the depot. Constraints (6) prevent the generation of isolated cycles. Finally, constraints
(7),(8),(9) define integer and binary conditions.

Note that, as in classical profitable problems, objective function (1) can be reformulated

max Z DijYij — Z CijTij — Z Dij-

(4,7)ER (i,7)EA (i,7)ER

as follows:

With respect to the formulation proposed in Archetti et al. [4] we add a variable z, associ-
ated to the depot, the set of valid inequalities (5) that forces to pass from the depot when
at least a node is visited, and the lower bounds in inequalities (4). These constraints are not
necessary, but make stronger the problem continuous relaxation and the relaxation obtained
removing connectivity constraints (6). Finally, an alternative formulation for the DPRPP
could be obtained generalizing the model proposed by Ardoz et al. [1]. In this case two sets
of variables are required both defined on the complete set A of arcs. The first set consists
of binary variables that indicate the first time arcs (if any) are traversed and served in the
optimal solution, whereas the second set consists of integer variables counting the additional

times such arcs are traversed.



X
\,

‘q
,
,
,
,
,
,
,
,
,
-}
\
:

Fig. A Fig. B

Figure 1: Upper bounds on arc traversals.

Let R* C R be the set of service arcs selected in an optimal solution of the DPRPP and

xy; the optimal value of variable z;;, (1,7) € A. The following proposition is trivially true:

Proposition 1 In an optimal solution of the DPRPP, xj; < |[R*| if (i,j) € R and zj; <
|R*| + 1 otherwise.

Instance depicted in Figure 1A shows a DPRPP instance with three service arcs (1,2), (2, 3),
(2,5) (shown in bold lines). Assuming that penalties and costs are such that all service arcs
are selected in an optimal solution, then variable z15 will take value |R*| = |R| = 3. Figure
1B shows the opposite case, in which arc (1,2) does not belong to R. In this case, variable
x12 will take value |R*| + 1, with |R*| = 2.

Let us consider the DPRPP relaxation obtained excluding subtours elimination con-
straints (6). From now on, we will refer to such a relaxation as to problem RELAX. We
indicate as Rrgy, the set of service arcs selected by the optimal solution of problem RELAX.
We have already defined R* C R as the set of service arcs selected in an optimal solution of
the DPRPP. The following proposition holds:

Proposition 2 In general, R* is not included in Rrgy,.

Proof Trivially, an isolated service arc (4,7) (i.e. a service arc not adjacent to any other
service arcs) with p;; < ¢;; will never be selected by the optimal solution of problem RELAX.
On the contrary it will make part of the DPRPP optimal solution if arc (, j) is necessary to

ensure connectivity to other service arcs visited by the optimal integer solution. [
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In spite of this negative result, we will show how, the set Rrpy, usually contains promising
service arcs, that is service arcs that will be likely visited in an optimal solution of the
DPRPP. In the following section, we will describe a heuristic algorithm that selects different
combinations of service arcs in Rgg; to and then formulates and solves to optimality the
resulting instance of the Directed Rural Postman Problem.

Given a subset R C R of service arcs, let G(V, A) be the graph induced by R, where
the set of nodes V' C V is the set of endpoints of arcs in R plus the depot (if not already
included), and the set of arcs is given by the set R plus arcs between every pair of nodes
in V. A cost ¢; is assigned to each arc in A as follows: if the arc (i,j) € R then ¢;; is its
original traversing cost, otherwise ¢;; is the cost of the shortest path connecting i to j in the
original graph G. The directed Rural Postman Problem visiting all required arcs of set R in

a tour at minimum cost can be formulated as follows:

(AUX) min Y o 1CijTij 10
subject t0: Y, cpn jy Tji = Dicvgyy T J € 1% 11
Ty 2> 1 (i,j) € R 12

13
14
15

ZieKngéKxijzl KCV\{0},K#0
2 jevioy Toj = 1
z;; > 0 integer (i,5) € A

(10)
(11)
(12)
(13)
(14)
(15)

Each variable z;; is non negative integer and represents the number of times arc (i, j) € A
is traversed. Objective function (10) minimizes the sum of traversing costs. Constraints (11)
are the classical in-degree and out-degree constraints. Constraints (12) ensure the traversing
of the set of selected service arcs. Constraints (13) are common connectivity constraints
which can be used since all nodes in graph G insist on at least one arc in R. Constraint (14)
guarantees that at least one arc has to leave the depot. Finally, constraints (15) define the
nature of variables x;;. From now on we will refer to this formulation of the directed RPP
as to the auziliary problem (AUX). Alternative formulations of the problem can be found in
Ball and Magazine [5] and Christofides et al. [10].

Auxiliary problem will be largely used both in the exact approach and in the heuristic
methods as external routine to find good feasible solutions given a promising subset of
service arcs to visit. For its solution we implement a branch and cut approach. First
the subproblem without constraints (13) is optimally solved. Note that constraint (14) is
not necessary in AUX formulation, but it makes stronger the problem relaxation obtained
eliminating constraints (13). The constraints (13) are added when an integer solution is
found in the search tree, i.e. they are added in a "lazy way”. We will better describe the

concept of "lazy way” when introducing our branch and cut method.



3 Solution Algorithms

In this section we describe the two heuristic procedures and the branch and cut approach
proposed for solving the DPRPP.

3.1 Exact solution algorithm

Our branch and cut algorithm is different from that proposed in [4] that uses the max-flow
algorithm by Boykov and Kolmogorov [8] as separation procedure for inequalities (6) and
applies it starting at the root node. Instead of solving continuous relaxation and inserting
violated subtours elimination constraints directly at the root node, our algorithm starts by
solving to optimality the RELAX problem. As soon as an integer solution is found in the
branch and bound search tree, isolated tours are looked for and, if found, they are prevented
by adding the inequalities (6) on the subsets P identified by the isolated cycles. A solution
becomes feasible when no more isolated tours are found in the integer solution, that is, no
more cuts will be discovered on that tree branch. Constraints added to an integer solution
are usually weak in a polyhedral sense, since they only remove a single infeasible integral
point. For this reason they are used in a "lazy way” by the branch and cut algorithm with
the purpose of checking the feasibility of the integral solutions found along the tree. In our
case the "lazy constraints” added do not only eliminate current infeasible solution, but also
exclude all integral solutions that contain such tours. We believe that the performance of
our branch and cut method highly depends on the time saving obtained solving RELAX
problem and then introducing subtours elimination constraints in a lazy way instead of
solving separation algorithm for subtours elimination from scratch as in [4]. Our method
avoids the introduction of the high number of constraints that the second method has to
deal with since the beginning.

Moreover, in order to improve our exact method performance, the auxiliary problem
AUX is solved on subsets of service arcs determined using information provided by solutions
at nodes of the search tree. A heuristic routine takes the optimal solution of the continuous
relaxation at a node of the search tree, and rounds the value of variables associated to service
arcs (i.e. all y;; variables with fractional value) to the closest integer. Selected service arcs
are then used as input to problem AUX. Note that given a set of required arcs the solution
of the auxiliary problem AUX will provide the best way to serve them. This may possibly
include the selection of additional service arcs located on the shortest path connecting nodes
of the reduced graph on which the auxiliary problem is formulated. If the solution found
by solving the auxiliary problem is better than the actual incumbent solution, the latter is
updated making bounding operations possibly more effective. This heuristic routine is called

iteratively along the whole search tree.



3.2 Heuristic solution algorithms

Most of heuristic methods provided in the literature for arc routing problems transform
problem instances into node routing instances. We propose two solution algorithms that
directly use arc routing formulation of the problem. The first approach is a matheuristic
where at each iteration a new subset of service arcs to be visited is selected and then a
directed rural postman problem is solved to optimality. Combining heuristics and exact
methods appears to be a very promising alternative in solving hard combinatorial problems,
we refer interested readers to Maniezzo et al. [25]. The second procedure is a final refinement
that tries to improve the best solution found by the matheuristic using the structure of a
branch and cut search, but getting quick convergence through the introduction of subtours

elimination constraints that may exclude feasible solutions.

Relaxation Based Heuristic

The first method solves problem RELAX and uses different combinations of arcs in Rrgr,
to construct DRPP instances that are then solved to optimality using the auxiliary problem
AUX. We call this algorithm Relaxation Based Heuristic (RBH) and report its pesudocode
in Algorithm 1.

At Step 1 of Algorithm 1 the values r* and w* are initialized to the case where no service
arcs are selected: the objective function value wx is set equal to the sum of all penalties,
whereas tour r* is void. Then the optimal solution (235, ykg.) of problem RELAX is
determined and the set of service arcs Rrgy, visited by such a solution identified (Step 2). If
the optimal solution of problem RELAX does not select any arcs, then initialization values
at Step 1 are optimal for the DPRPP and the algorithm stops providing them. This is also
the case if the optimal solution of problem RELAX contains a unique tour closed to the
depot (Steps 3-5). Otherwise, the three subroutines ISA, IDA and IIA are called and the
best tour found r* with total cost w* is returned at the end.

Pseudo code of the Initial Solution Algorithm (ISA) is described in Algorithm 2. At Step
1 this subroutine finds a first feasible solution solving a DRPP using as required arcs the
complete set Rrp; of service arcs selected by the optimal solution of problem RELAX.

The optimal solution of problem RELAX can have isolated tours. If an isolated tour
contains only one service arc, we call such an arc an isolated service arc. To be selected in
the optimal solution of problem RELAX an isolated service arc must have a penalty larger
than the traversing cost of the corresponding tour. The selection of isolated service arcs in
an optimal solution of the DPRPP depends on how convenient they remain after imposing
their connection to the depot tour. Whereas it may happen that an isolated service arc is

selected in the optimal solution of the DPRPP, we notice that this is usually not the case.
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Algorithm 1 Relaxation Based Heuristic (RBH)

Require: Graph G=(V,A), set R of service arcs. Maximum computational time T}, 4.

Ensure: a feasible tour r* with total cost w*.

1:
2:

10:
11:
12:
13:
14:
15:

Set r* := () and total cost w* := 3, ;s r Pij-
Solve problem RELAX. Let (255, Yngr) be its optimal solution and let Rrpr, C R be
the subset of service arcs selected in (255, YngL)-
if 5z, = 0 then return (r*, w*).
if (2%pL, Yhe) contains a unique cycle 7 closed on the depot with total cost w then
Set r* := 7 and total cost w* := w.
return (r*, w*)
else
(r',w') == ISA((&hpp, Yips)s Rrer)-

if w' < w* then set w* :==w', r* =1,
(r',w') = IDA((zhpLs Yier), BreL).

’

if w < w* then set w* :==w', r* =1,
(r',w') = TA((Thprs Yher))-
if w' < w* then set w* :==w', r* =1,
return (r*, w*).

end if

Algorithm 2 Initial Solution Algorithm - ISA((2%5., YreL)s RrEL)

1:

Solve problem AUX using set Rrgr, as required arcs. Let r be the tour found and w its
total cost.

Let R be the set of isolated service arcs selected in (257, Vigr)-

if R+ ( then

Solve problem AUX using set Rrgrr ‘= Rrer \ R. Let 7 be the tour found and w its
total cost.

end if

if w < w then set w :=w, r :==T7.

return (r,w).

So, we decide (Steps 2-5) to eliminate all isolated service arcs from set Rggy, and then solve

problem AUX on the remaining set. Algorithm 2 terminates providing the best between the

two solutions found.

Routines IDA and ITA represent the two main phases of the Relaxation Based Heuristic.

Their pseudo codes are illustrated in Algorithms 3 and 4.

Isolated subtours are selected in the optimal solution of RELAX problem when the sum
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Algorithm 3 Improvement by Decreasing Algorithm - IDA((z%51: YreL))
: Set r =0 and w = > (ij)erPij-

: Let 1 be the # of isolated tours in (x5, Yngr) With more than 2 service arcs.

1

2

3: fori=1,...,ndo

4:  Let R; be the set of service arcs belonging to tour i. Set Ry, = Rrer \ Ri.

5. Solve problem AUX using set Ry, as required arcs. Let r; be its solution and w; its
total cost.
if w; < w then set w := w;, r :=r;.

end for

Let ro be the tour passing through the depot in (255, yrg) and wy its total cost.

if wy < w then set w := wy, r := ry.

10: return (r,w).

of traversing costs is lower than the sum of penalties. Nevertheless, their actual convenience
for the optimal solution depends on the cost to connect them to the depot. To evaluate the
convenience not to serve an isolated tour found by the RELAX problem optimal solution,
Algorithm IDA removes, in turn, the service arcs of each isolated tour from the set Rgrgy.
At each iteration of the for cycle (Steps 3—7 of Algorithm 3) a new set of required arcs
R, is determined and then eliminated from Rpgy. The resulting set of service arcs Rpyp; is
provided as required arcs to construct a DRPP instance (problem AUX) solved to optimality.
If no convenient paths exist to connect isolated tours to the depot, it may happen that the
tour passing through the depot in the optimal solution of problem RELAX is already optimal
for the original problem. Algorithm IDA takes this into account in Step 8.

Subroutine Improvement by Increasing (IIA) aims at evaluating the convenience to con-
nect each isolated tour with the tour passing through the depot. This should represents a
measure of the convenience to insert it into the optimal solution. At this aim during each
iteration of the first for cycle (Steps 4-7) the service arcs selected by an isolated tour are
added to those (if any) in the tour passing through the depot and used as input to problem
AUX. For each set R; U R of required arcs defined at Step 5, we keep the objective function
value (total cost) of the solution found by the problem AUX and in Step 8 we sort isolated
tours in non decreasing order of such values. Then, following such an order, the iterations of
the second for cycle starting at Step 10, evaluate solution obtained by increasingly includ-
ing the set of service arcs of each isolated tour, one after the other, to the set of service arcs
of the tour passing through the depot. Thus, at each iteration a new instance of problem
AUX is solved receiving as input an increasing set of required arcs represented by the set
of service arcs considered in the previous iteration plus the arcs of the isolated tour under

consideration.
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Algorithm 4 Improvement by Increasing Algorithm - IIA((255., YRgL))
L Set r =0 and w =73 i\ crPij-
2: Let 1 be the # of isolated tours in (x5, Yrpy) With more than 2 service arcs.

3: Let Ry be the set of service arcs selected by the tour passing through the depot in
(TheL: YreL)-

4: fori=1,...,n do

5. Let R; be the set of service arcs selected by tour i. Solve problem AUX using set
R; U Ry. Let r; be the solution tour and w; its total cost.
if w; < w then set w := w;, r :=r;.

end for

Sort sets {R;,7 = 1,...,7} in non decreasing order of solution costs {w;,i = 1...n}.

Set R := R; U Ry.

10: for i =2ton—1do

11:  Solve problem AUX using set R := RU R;. Let 7 be its solution tour and w its total

cost.
12:  if w < w then set w :=w, r := 7.
13: end for

14: return (r,w).

Post-processing of RBH
As final post-processing the whole Algorithm 1 is repeated changing the solution found
by the RELAX problem at Step 2 through the insertion of a constraint forcing the selection

of a larger number of service arcs by a defined percentage v, as follows:

> @y > |Rppol* (1+7).
(1,9)€ER
If v|Rrer| > |R| — |RreL|, then the right hand side is set to (1 — v)(|R| — |Rrer|). If
|Rrer| = |R| post processing is not applied.

Heuristic Cuts Search (HCS)

The best solution found by procedure RBH is used as input to an algorithm that exploits
the structure of a branch and cut algorithm but inserts cuts for subtours elimination in a
heuristic manner. Resulting cuts may not be valid inequalities thus excluding integer feasible
solutions. In particular, at each node of the branch and bound tree when an integer solution
is available the procedure identifies isolated subtours. If the cardinality of the set P of nodes
making part of the subtour is larger than [« ||’3“ | the following cut is introduced:

V]
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2iiep 2jep iy =1 VP CVA{0}, P #0 (16)

In all the other cases, exact violated cuts are added.

Introduction of an inequality (16) prevents the creation of a particular isolated tour
forcing its visit (right hand side of each constraint (16) is a constant). This may cause the
exclusion of some problem feasible integer solutions. The rationale for their introduction is
that larger isolated tours are more likely to belong to an optimal solution and thus they are
forced directly without identification of the valid violated cut. The algorithm stops when a
time limit is met. As our branch and cut algorithm also this heuristic makes an intensive
use of the heuristic routine solving problem AUX on predefined sets of service arcs at nodes
of the search tree. We call this procedure Heuristic Cuts Search (HCS).

4 Experimental analysis

In this section we present the results obtained testing our algorithms on the set of bench-
mark instances provided by Archetti et al. [4] that can be downloaded at the web site
http://www.unibs.it/sites/default/files/ricerca/allegati/13004DPRPP.zip. We

reorganize these benchmark instances in the following sets:

e Set 1: instances DPRPP_e_§_valXA originally come from those by Benavent et al. [6]
modified by introducing penalties. Parameters (e,0) define the interval [ec;j, d¢;;] in
which penalty p;; for each arc (4, j) is randomly generated and are set equal to (1.0, 2.0),
(1.5,2.5) and (2.0, 3.0), respectively. The total number of instances is equal to 30.

e Set 2: instances DPRPP _e_d_egl-eY-A and DPRPP _¢_6_egl-sY-A, originally taken from
Li and Eglese [24], are obtained setting parameters (¢,0) equal to (1.0,2.0), (1.5,2.5)
and (2.0, 3.0), respectively. This gives rise to 24 instances altogether.

e Set 3: 26 instances DPRPP_P.
e Set 4: 36 instances DPRPP_D.
e Set 5: 36 instances DPRPP_G.

e Set 6: 20 instances DPRPP_R.

Sets 3-6 come from Ardoz et al. [2], where the original profits of these problems have been

used as penalties for the DPRPP. At the website http://www.ing.unibs.it/~orgroup/
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instances.html we provide new best known values and new optimal solutions we get on
these benchmark instances.

All tests have been performed using a Laptop with 1.73 Ghz processor in Windows Seven
operating system. Algorithms have been coded in C+4 and models implemented in ILOG
Concert Technology 2.0 and solved using CPLEX 10.1.

4.1 Exact results

In this section we show the results obtained by our exact procedure. We set a computational
time limit of 3600 seconds after which the branch and cut search is stopped and the best
feasible solution found as well as its percentage gap with respect to the best lower bound
are provided as output.

In Tables 1-6 for each set of instances we report three variants of our exact procedure. The
first one, named ”Basic”, uses the same problem formulation as that proposed in Archetti
et al. [4]. The second one, named ”New”, uses our formulation of the DPRPP that includes
new inequalities. Finally, the last one, named ”"New + Aux”, uses formulation New along
with the heuristic routine that solves the problem AUX iteratively at nodes of the search tree
and uses as starting initial solution the payment of all penalties. In the last variant, after
some preliminary tests we have decided to set to 10 seconds the maximum time available
to solve the auxiliary problem (AUX) at a tree node. Tests have shown that, on average,
CPLEX can optimally solve this problem in less than 10 seconds. Moreover, we set to 2%
the percentage gap between incumbent integer solution and best bound, under which the
auxiliary problem is not solved anymore. Preliminary tests have shown that, on average, it
is difficult that a solution of this problem can improve the best incumbent under this gap
value. Finally, to limit the number of times the auxiliary problem is solved, we set a CPLEX
condition that calls the heuristic only if the current iteration is a multiple of 100.

All Tables 1-6 have the same structure. The first column provides instance name, whereas
columns ”|V|” and ”|R|” indicate the size of solved instance, namely the number of nodes
and of service arcs, respectively. Column ”Opt.” shows the optimal solution value of an
instance if it is found by at least one variant; the entry is highlighted in bold style when a
new (not previously known) optimal solution value is found. If at least one variant finds a
solution value that improves the best known value the entry in column ”Opt” is in italic font.
Columns ”"Time” and ”# cuts” report the time in seconds required by each variant to get the
optimal solution and the number of cuts added to prevent isolated tours. If a variant does
not find the optimal solution within the computational time limit of 3600 seconds in column
”Time” we report (into brackets) the best integer solution found and its percentage gap
from the best lower bound. These values into brackets are also reported when the algorithm

goes out of memory. In such a case the computing time is put before the bracket, whereas
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a symbol "*” is put in the name of the instance when all tested variants terminates out of
memory.

Table 1 shows the results on Set 1 of instances. DPRPP_e_§_valXA are very easy in-
stances: their solution always requires less than 1 second. Note that in variants New and
New-+Aux the number of added cuts is lower than in the formulation Basic. Since these in-
stances are extremely easy the introduction of a heuristic routine solving DRPPs seem to be
meaningless. In Table 2 are shown the results for the instances in Set 2. DPRPP_e_d_egl-eY-
A and DPRPP_e__egl-sY-A instances are among the most difficult ones. Our algorithm has
been able to find the optimal solution for 6 previously open instances (bold entries). In this
set two instances are still not solved to optimality (namely instances DPRPP_1.0_2.0_egl-
s2-A and DPRPP_1.5_2.5_egl-s1-A) but, in one case, formulation New+AUX found a new
best known integer solution value. Comparing the Basic variant with the New+AUX vari-
ant, one can note that both the average computational time and the average number of
cuts are lower for the second one. Thus, the introduction of new constraints and of a
heuristic routine solving the auxiliary problem (AUX) seem to help Branch and Cut algo-
rithm. Table 3 shows the results obtained on instances of the Set 3. If we exclude instances
DPRPP_ALBAIDAANoRPP and DPRPP_ALBAIDABNoRPP that are the most difficult
problems in the set, the other ones are still quite easy instances solved, on average, in less
than 1 second and always requiring a limited number of cuts. Table 4 reports solutions found
for Set 4 (instances DPRPP_D). This set shows instances with a large deviation in terms of
number of nodes and service arcs. The complexity of such instances increases with their size
from the first to the last one. Our algorithm finds the optimal solution using all the three
variants for all the instances and has been able to close all the four open instances. Variant
New has reduced the computational time by about 7 times with respect to variant Basic and
halved the number of cuts that have to be inserted to get optimal solution. Comparing the
columns ”# cuts” for variants New and New + Aux can be noted that in some instances
the solution of the auxiliary problem seem to be helpfull. In Table 5 are shown results on
Set 5 (instances DPRPP_G). As for DPRPP_D instances, size and complexity increase from
the first to last one. Our algorithm performs well always finding the optimal solution but
for one instance and closing 7 out of 8 previously open instances. Variants New and New +
Aux both behave quite well almost halving the average computational time and the average
number of cuts with respect to variant Basic. Finally, Table 6 shows the results on Set 6 (in-
stances DPRPP_R) where variant New provides the best performance immediately followed
by variant New + Aux. Our algorithm has been able to find the optimal solution for all
the instances, closing two previously optimally unsolved instances. In conclusion, our exact
algorithm, in its various variants, has been able to solve all instances but 3. The experimen-

tal analysis shows that the introduction of new constraints on variables z; create a stronger
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formulation that significantly help Branch and Cut resolution. The use of a heuristic routine
solving directed rural postman problems on subsets of arcs (problem AUX) seem to help
algorithm performance. It is evident how the use of this heuristic does not seem to heavly
affect the average computational time. Besides, in those instances not solved to optimality

it has allowed the exact algorithm to find the best known solution values.

4.2 Heuristic Results

In this section we analyze the performance of our heuristic approaches. After some prelim-
inary tests, we have decided to set parameter ~ for heuristic RBH to 0.30. The maximum
computing time assigned to heuristic HCS has been set to 50 seconds. To limit the number of
times the auxiliary problem is solved, we set a CPLEX condition that calls the corresponding
heuristic only if the current iteration is a multiple of 10. A maximum computing time of
10 seconds is assigned to the solution of each AUX problem and the percentage gap under
which this problem is not solved anymore is set to 2% as for our exact algorithm.

In the following tables we compare the performance of the tabu search algorithm and the
ILP-refinement (indicated as ILP-ref. in the tables) proposed by Archetti et al. [4] with our
procedures RBH and HCS, the latter tested with o = 0 and a = 0.05.

Tables 7-12 have all the same structure. The first column indicates the name of the
instance (reduced to the identification number). Column ”Best Known” shows the best
known solution value for each instance, this corresponds to the optimal solution value in
all but three instances identified by symbol 7 (*)”. Column ”"Gap (%)” provides for each

heuristic the percentage gap of its solution value (UB) from the best known value (BK)

UB-BK
UB

Column "Time” indicates the computational time in seconds required by each algorithm.

as follows (computed as in Archetti et al. [4] in order to guarantee a comparison).
This means that to correctly evaluate the time of the ILP-refinement that receives as input
the solution found by the Tabu search, one has to sum the computational time of the two
procedures. Thus, differently from Archetti et al. [4], the ”Time” column of ILP-refinement
is the sum of tabu search and ILP-refinement computing times. Similarly, the computational
time for our heuristic HCS that receives as input the best solution found by procedure RBH
is computed as the sum of the times required by the two procedures. Column ”Routine”
shows which routine of the method RBH has found the best final solution. If the name of
the routine has ”(y)” at the end, it means that the best solution has been found by this
routine during the post-processing phase of RBH procedure. For algorithm HCS column " #
cuts” provides the number of heuristic cuts used and column ”# AUX” shows the number
of time the auxiliary problem AUX has been solved and the number of times its solution has
improved the best incumbent integer solution (value into brackets).

Table 7 presents results for Set 1. Procedure HCS finds the optimal solution for all
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instances with both a = 0.05 and a = 0. In particular, almost all the optimal solutions have
been found by routine ISA. Algorithm RBH has always required a computational time lower
than 1 second finding an average error almost null, whereas tabu search and ILP-refinement
show a performance slightly worse with an average computational time of about 13 and 16
seconds respectively. Table 8 shows heuristic results on instances of Set 2. In this set tabu
search performs very well providing an average gap equal to 0.28, whereas ILP-refinement
has no effect at all. Our algorithm RBH performs very well but in few instances. Average
error provided by RBH is strongly reduced by HCS. It is worth noticing that HCS(a = 0.05)
behaves better than HCS(a = 0) where all subtours (also the smallest) are forced to be
visited. This seems to confirm our idea that smallest subtours selected by problem RELAX
are more unlikely to belong to the optimal solution. To conclude, on this set of instances,
the performance of HCS and that of ILP-refinement are comparable. On instances of the Set
3 (see Table 9) our algorithm HCS with o = 0.05 outperforms state of the art algorithms.
Its average computational time and the average gap are equal to 4.55 seconds and 0.08%,
respectively, whereas the corresponding values increase to 19.84 seconds and to 0.38% for
ILP-refinement by Archetti et al. [4]. In Table 10 heuristic results on instances of the Set 4
are presented. Also in this set our algorithm outperforms state of art algorithms. HCS with
a = 0.05 requires, on average, 32 seconds and gets an average gap equal to 0.29%, whereas
ILP-refinement shows an average gap equal to 0.71% and requires about 40 seconds. In Set
5 (see Table 11) the average time of our HCS with a = 0.05 is higher by about 8 seconds
than that of ILP-refinement, whereas its percentage gap is 0.12% instead of 0.18%. It is
worth noticing that, for these instances, HCS is able, on average, to strongly improve results
obtained by RBH in less than 3 seconds. Finally, better results can be found on Set 6 in
Table 12, where both RBH and HCS algorithms get an average gap better than tabu search
and ILP-refinement, respectively and requiring computational times significantly lower. The
average computing time of our HCS is lower than 1 second with an average gap equal to
0.25% against the 40 seconds required by the ILP-refinement getting an average gap of 0.46%.

In Table 13 we report a summary comparing all results for ILP-refinement and HCS. The
first column indicates the set of instances, then for each algorithm we provide the average
(Avg.) and the maximum (Max) gap and the average and the maximum time computed out
of all instances in each set. On all solved instances our algorithms provides a better average
performance both in terms of time and percentage gap.

Table 14 illustrates the number of times each routine in RBH obtains the best solution.
For each routine (i.e. for each row) we provide the number of times it gets the best value (final
solution) for algorithm RBH (first column) and for the refinement HCS (second column),
respectively. For instance, routine ISA gets the best solution value provided by RBH in 69
instances out of the 172 available, whereas for HCS this happens 56 times, that is in 13 out
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of 69 times HCS was able to improve the best result obtained by ISA. These 13 instances
are included in the 85 where HCS got the best final result improving the result obtained by
RBH.

Finally, in Table 15 we provide the number of times each algorithm finds the best solution
value in each set of instances, and show into brackets the number of times such values coincide
with the best know solution values. If the best known value is reached by more than one
algorithm we count it for all of them. For instance, the first row of DPRPP_e _§_val results
shows that tabu search and ILP-refinement get 21 best heuristic solutions that coincide with
the best known values while RBH and HCS find 28 and 30 best solutions corrisponding to
best known values, respectively. To conclude, HCS performance is very good and RBHis an
easy and fast matheuristic able to find promising solutions in some sets of instances even
better than those obtained by more complicated meta-heuristic algorithms as the tabu search

used as benchmark.
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Tabu Search - ILP-ref. RBH - HCS (a=0.05)

Gap Time Gap Time
Instances Avg. | Max | Avg. Max | Avg. | Max | Avg. Max
DPRPP_e.d_val | 0.08 | 0.47 | 16.33 55.86 | 0.00 | 0.00 0.41 1.20
DPRPP_e.degl | 0.29 | 2.74 | 70.22 | 404.43 | 0.28 | 1.65 | 75.04 | 378.46
DPRPP_P 0.38 | 1.97 | 19.84 | 117.58 | 0.08 | 1.96 4.55 54.60
DPRPP_D 0.71 | 2.89 | 39.82 | 123.14 | 0.29 | 1.89 | 31.71 | 269.02
DPRPP_G 0.18 | 2.89 9.29 53.78 | 0.12 | 2.22 | 17.87 | 101.04
DPRPP_R 0.46 1.36 | 39.14 | 124.22 0.25 1.52 0.54 2.20
All instances 0.35 | 2.89 | 30.48 | 404.43 | 0.17 | 2.22 | 21.67 | 378.46

Table 13: Summary Table

RBH | HCS (a=0.05)

ISA 69 56

IDA 48 14

A 13 12

ISA (v) 13 2

DA (v) 20

ITA (v) 9 1

HCS - 85

Total | 172 172

Table 14: Performance analysis of RBH routines and HCS

# | Tabu Search | ILP Ref. RBH | HCS (a=0.05)
Set 1- DPRPP_ed.val | 30 21 (21) | 21 (21) | 28 (28) 30 (30)
Set 2- DPRPPedegl | 24 18 (16) | 18 (16) | 10 (9) 21 (19)
Set 3 - DPRPP_P 26 15 (15) | 15 (15) | 10 (10) 25 (25)
Set 4 - DPRPP_D 36 15 (15) | 17 (17) | 10 (10) 31 (31)
Set 5 - DPRPP_G 36 31 (31) | 31 (31) | 15 (15) 34 (34)
Set 6 - DPRPP_R 20 6 (6) 10(7) | 7(6) 15 (14)
All instances 172 106 (104) | 112 (107) | 80 (78) 156 (153)

5 Conclusions

In this paper we analyze a generalization of the Directed Rural Postman problem where not
all arcs requiring a service has to be visited provided that a penalty is paid for those not
served. This generalization is called Profitable Directed Rural Postman problem.

We propose a branch and cut algorithm and two heuristic methods. The exact algorithm
introduces cuts in a lazy way and this has allowed to close all but three open benchmark
problems available in the literature. Heuristics behave very well outperforming state of the

art algorithms in many sets of instances. The core of the first procedure is the solution of

Table 15: Comparison with benchmark
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Directed Rural Postman Problems constructed on subsets of service arcs previously selected

by the optimal solution of a problem relaxation. The second heuristic procedure is a quite

general method based on a branch and cut structure exploiting heuristic cuts that may

eliminate feasible solutions. We believe that the main ideas behind these two heuristic

algorithms deserve to be further developed also for other arc routing problems.
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