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Abstract

The Traveling Purchaser Problem (TPP) has been one of the most studied generalizations of the Trav-

eling Salesman Problem. Thanks to its double nature of procurement and transportation problem, the

TPP has attracted the attention of both researchers in combinatorial optimization and practitioners

in recent decades. The problem has been used to model several application contexts and is compu-

tationally challenging, dealing at the same time with the suppliers selection, the optimization of the

purchasing plan and the routing decisions of the purchaser. We survey, for the first time after 50 years

from its birth, all the research done on the TPP including the most interesting and best performing

solution methods proposed so far. We conclude providing some interesting future developments.

Keywords: traveling purchaser; vehicle routing; supplier selection; exact and heuristic methods.

1. Introduction

Procurement problems, optimizing costs and revenues for manufacturing companies or firm retail-

ers, have a long history in the specialized literature. The aim of a procurement problem is, in general,

to elaborate a purchasing plan that satisfies the demand for a set of products/raw materials while

minimizing the procurement costs. Usually, the plan is formalized in terms of two joint decisions, one

concerning which suppliers should be selected, and the other one deciding how much should be ordered

from each supplier (Aissaoui et al., 2007). This activity is critical in any organization, considering that

procurement expenditure typically accounts for a large portion of a firm total cost. For this reason

today procurement logistics is still a vivid stream of research (Manerba, 2015).

The study of routing/transportation problems optimizing traveling costs dates even back. A routing

problem generally aims at finding one or more optimal tours in order to visit a set of geographical

locations (customers, suppliers, etc.) from a central depot. The well-known Traveling Salesman

Problem (TSP) and the Vehicle Routing problem (VRP) belong to this category (see Gutin and

Punnen, 2002 and Toth and Vigo, 2014).
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The joint evaluation of both transportation and procurement problems is a more recent stream

of research combining the relevant features of the two previous contexts. The Traveling Purchaser

Problem (TPP) belongs to this stream. In the TPP, given a list specifying products and quantities

required, a purchaser has to find a purchasing plan that exactly satisfies the products demand by

visiting a subset of suppliers in a unique tour. The objective of the purchaser is to minimize the

combined traveling and purchasing cost. In the classical TPP only a single vehicle is involved, even if

multi-vehicle variants have already been studied in the literature.

According to Golden et al. (1981) and Fischetti et al. (2007), the TPP represents, together with

the family of orienteering problems, one of the most interesting generalizations of the TSP. The large

number of papers published on this problem in the last decade demonstrates that it still attracts

interest among researchers and practitioners. For these reasons, the purpose of the present paper is

to survey, for the first time after almost 50 years from its birth, the existing literature on the TPP. In

particular, we will focus on its modeling aspects and solution methods, also including the analysis of

its several variants, as the multi-vehicle ones.

The paper is organized as follows. In Section 2, we formally define the TPP, standardize its

classifications, point out some interesting properties, and present its many practical applications. In

Sections 3 and 4, we survey different Mixed Integer Linear Programming (MILP) formulations for the

TPP and the most important polyhedral results, respectively. Sections 5 and 6 present exact and

heuristic approaches, respectively. Section 7 analyzes deterministic, dynamic, and stochastic variants

of the TPP, as well as its multi-vehicle extensions. Section 8 presents and compares different sets of

benchmark instances. Finally, some conclusions and open lines of research are drawn in Section 9.

2. Problem definition and properties

The TPP is a single-vehicle routing and procurement problem defined as follows. Consider a depot

0, a set K of products/items to purchase, and a set M of geographically dispersed suppliers/markets to

choose from. A discrete demand dk is specified for each product k ∈ K, that in turn can be purchased

in a subset Mk ⊆M of suppliers at a price pik > 0, i ∈Mk. Moreover, a product availability qik > 0 is

also defined for each product k ∈ K and each supplier i ∈Mk. Note that, to guarantee the existence of

a feasible purchasing plan with respect to the product demand, the condition
∑

i∈Mk
qik ≥ dk, ∀k ∈ K

has to hold. The problem is defined on a complete directed graph G = (V,A) where V := M ∪ {0} is

the node set, and A := {(i, j) : i, j ∈ V, i 6= j} is the arc set. A traveling cost cij is associated with

each arc (i, j) ∈ A. The TPP looks for a simple tour in G starting and ending at the depot, visiting a

subset of suppliers and deciding how much to purchase for each product in each supplier so to satisfy

the demand at minimum traveling and purchasing costs.

The great interest around the TPP is probably due to the fact that it challengingly combines

supplier selection, routing construction, and product purchase planning. Figure 1 shows the three

components of the problem in a layered framework. It is clear that optimally solving each subproblem

separately does not guarantee to achieve the optimal solution for the TPP.

A crucial aspect that differentiates TPP from the most part of routing problems is that not all
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Figure 1: Components of the TPP in a layered structure.

suppliers have to be visited necessarily (first layer in Figure 1). This feature links the TPP to the

so-called routing problems with profits (Feillet et al., 2005). Since the main goal of the purchaser is to

satisfy product demands, the convenience to visit or not a supplier depends in general on the trade-off

between the additional traveling cost of visiting it and the possible saving obtained in purchasing

products at lower prices. The TPP has a bi-objective nature, linearly combining in a single objective

function the minimization of both traveling and purchasing costs (second and third layer in Figure

1). This makes the problem of selecting optimal suppliers more complex. On the one hand, the

traveling costs optimization pushes the purchaser to select only suppliers that are strictly necessary

to satisfy products demand; on the other hand, the purchasing costs minimization pushes to select a

more convenient and potentially larger set of suppliers.

We remark that suppliers selection in the TPP has to be intended only at an operating level,

depending on the daily product demand, prices, and availabilities. The strategic decisions for selecting

the best suppliers based on qualitative criteria (e.g., service quality and reliability) concern another

well-studied stream of research (Degraeve et al., 2000).

2.1. Common classifications

A first classification comes from the TPP routing nature. As for the TSP, a TPP modeled on

a directed graph, where the cost cij is potentially different from cji, is named asymmetric (ATPP).

Otherwise, if cij = cji for each arc (i, j) ∈ A, the problem is called symmetric TPP (STPP). In the

literature, ATPP and STPP are often referred to as directed and undirected TPP, respectively.

A second common classification, mainly related to the application context, distinguishes the

unitary-demand case, i.e. the case in which dk = 1 for each product k ∈ K, from the general case in

which the product demands are discrete positive values. The first case better fits with job-scheduling

problems, whereas the second one is more suited for procurement logistics settings.

Another significant classification concerns the availability of products at the suppliers. If the

available quantity of a product k ∈ K in a supplier i ∈Mk is defined as a finite value qik, potentially
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smaller than product demand dk, then the TPP is called restricted (R-TPP). The unrestricted TPP (U-

TPP), instead, considers the case in which supplies are unlimited, i.e., where qik ≥ dk, k ∈ K, i ∈Mk.

Note that U-TPP represents a special case of R-TPP, since having unlimited supplies is equivalent

to consider dk = 1 and qik = 1, ∀k ∈ K, ∀i ∈ Mk. In the literature, several papers refer to R-TPP

and U-TPP as capacitated and uncapacitated TPP, respectively. However, we prefer to adopt the

former nomenclature in order to avoid confusion with the concept of vehicle capacity, appearing in

the multi-vehicle case. Rarely, these variants are also called limited-supply and unlimited-supply TPP.

2.2. Complexity

The TPP is NP-hard in the strong sense since it generalizes both the TSP and the Uncapacitated

Facility Location Problem (UFLP). This can be proved by the following reductions: 1) the TSP

corresponds to an U-TPP where each supplier offers a product that cannot be purchased elsewhere;

2) the UFLP can be seen as an U-TPP where each potential facility location corresponds to a supplier

and each customer to a product, Mk = M for all k ∈ K, pik is the cost of serving customer k from

facility i, and cij := (bi + bj)/2, ∀(i, j) ∈ A, with bi the cost of opening facility i.

There exist, however, some TPP special cases that can be solved trivially:

Trivial-traveling case: if traveling costs are null, then an optimal U-TPP solution can be found

by purchasing each product from its cheapest supplier, since any tour connecting these suppliers is

optimal. For the R-TPP, instead, we first need to sort the suppliers in non-decreasing order of price for

each product k. Then, the optimal solution can be found by purchasing, for each k, from its cheapest

suppliers the minimum between the available quantity and the residual demand;

One-supplier case: if a supplier sells all the products at the lowest price, then only this supplier will

be part of the optimal tour. In the R-TPP, this remains true if for each product the quantity available

in that supplier is sufficient to satisfy the demand.

Finally, note that the problem feasibility can be checked polinomially just by inspection of the

input data. If a product is not available at any supplier, then no solution exists for the U-TPP.

Similarly, for the R-TPP, the infeasibility occurs if it exists a product k such that
∑

i∈Mk
qik < dk.

2.3. Application contexts

Until now, we have presented the TPP only as a procurement/transportation problem, since logis-

tics represents its more common application context. Interesting enough, the combinatorial structure

of the problem appears for the first time (in its unrestricted form) with the work by Burstall (1966) in

relation to the scheduling of different jobs on a multi-purpose production line. In that case, products

correspond to required jobs and suppliers to particular production line configurations (or states). The

costs pik represent the time needed to process job k in configuration i, while costs cij represent the

time needed to changeover from configuration i to j. The objective is to choose the sequence of config-

urations and jobs in order to minimize the overall time to conclude the jobs’ batch. In the cited work

the application context is that of manufacturing steel tubes, but it is easy to imagine the applicability

of this TPP setting to the optimization of jobs in any machine shop using general-purpose machineries
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(see, e.g., Cattrysse et al., 2006 for a scheduling problem on a sheet metal bending machine in the

press brakes production planning context).

However, the TPP has started gaining a lot of attention from the operation research community

only after its reinterpretation as a vehicle routing problem by Ramesh (1981). For the sake of com-

pleteness we precise that the applicability of the TPP in a procurement context, in contrast to what

claimed in most of the articles on the TPP, has appeared ten years before the work by Ramesh (1981)

along with the Decorator’s Problem example discussed by Buzacott and Dutta (1971). In real pro-

curement settings, in fact, it is very common that a company is directly involved in the purchasing

and collection of raw materials, spare parts, or products from some reliable suppliers. Moreover, as

suggested by Singh and van Oudheusden (1997), the TPP can also be used in warehousing operations

for dispatching a vehicle to pick up the ordered items (which are stored in different picking locations)

and transport them to the shipping area. Other routing applications include, for example, the problem

of planning the tour needed for a school bus to pick-up students.

Again, the TPP can be employed in many network design applications such as subway/rail lines,

irrigation networks, and so on. Not surprisingly, along with the extraordinary worldwide expansion

of telecommunication networks in the nineties, Voß (1990) and Ravi and Salman (1999) highlighted

the possibility of using TPP to design special configurations in industrial and generic communication

networks. Such infrastructures consist of several local access networks (LANs) collecting traffic of

user nodes at the switching centers and of a backbone network that routes high volume traffic among

switching centers. Because of its reliability and self-healing properties, an optimized network structure

requires a ring architecture for the backbone and a star architecture for the LANs. The problem is

to determine a tour (the ring backbone) on a subset of the network nodes and connect the remaining

nodes to others in the tour (star configuration) minimizing the overall connection cost. This problem,

named the ring-star problem, is actually a TPP special case where the graph nodes correspond to both

the set of suppliers and the set of products.

Finally, to further underline its wide applicability, we remark that an intermodal transportation

problem (Infante et al., 2009) and even a forest management problem (Wikström and Eriksson, 2000)

have been related to the TPP. In the recent years, along with the study of variants and generalizations

of the TPP, other application contexts such as nurse routing and scheduling of surgeries in operating

rooms have appeared. We will describe them in Section 7.

3. Mathematical programming formulations

In this section, we present different MILP formulations for the ATPP and the STPP.

3.1. Asymmetric TPP

Let yi, i ∈ M , be a binary variable taking value 1 if supplier i is selected, and 0 otherwise. Let

xij , (i, j) ∈ A, be a binary variable taking value 1 if arc (i, j) is traversed, and 0 otherwise. Let zik,

k ∈ K, i ∈ Mk, be a variable representing the number of units of product k purchased in supplier

i. Moreover, for any subset V ′ of nodes, let us define δ+(V ′) := {(i, j) ∈ A : i ∈ V ′, j 6∈ V ′} and
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δ−(V ′) := {(i, j) ∈ A : i 6∈ V ′, j ∈ V ′}. Then, the ATPP can be formulated as follows:

(ATPP ) min
∑

(i,j)∈A

cijxij +
∑
k∈K

∑
i∈Mk

pikzik (1)

subject to
∑
i∈Mk

zik = dk k ∈ K (2)

zik ≤ qikyi k ∈ K, i ∈Mk (3)∑
(i,j)∈δ+({h})

xij =
∑

(i,j)∈δ−({h})

xij = yh h ∈M (4)

∑
(i,j)∈δ−(M ′)

xij ≥ yh M ′ ⊆M,h ∈M ′ (5)

xij ∈ {0, 1} (i, j) ∈ A (6)

yi ∈ {0, 1} i ∈M (7)

zik ≥ 0 k ∈ K, i ∈Mk. (8)

Objective function (1) aims at the joint minimization of the traveling and purchasing costs. Equations

(2) ensure that each product demand is satisfied exactly. Constraints (3) impose that each supplier

has to be visited to purchase a product from it and the purchased quantity should not exceed the cor-

responding availability. Constraints (4) and (5) rule the visiting tour feasibility. Equations (4) impose

that, for each visited supplier, exactly one arc must enter and leave the relative node. Inequalities (5)

are connectivity constraints that prevent the creation of sub-tours not including the depot by imposing

that at least one arc must enter each subset M ′ of suppliers in which at least one supplier h is visited.

Finally, constraints (6)–(8) impose binary and non-negative conditions on variables. No integrality

conditions are required for z-variables, even if they actually represent the number of units purchased

for each product in each supplier. If all input data are integer, in fact, then an optimal solution where

all z-variables have integer values always exists.

A first trivial preprocessing can be applied to strengthen model (1)–(8). To this aim, we define

M∗ := {0}∪
{
i ∈M : ∃k ∈ K such that

∑
j∈Mk\{i} qjk < dk

}
as the node set that must be necessarily

part of any feasible TPP solution, and K∗ :=
{
k ∈ K :

∑
i∈Mk

qik = dk

}
as the product set for which

suppliers selection and purchasing plan decisions can be predetermined. Thus, constraints (7) can be

replaced by yi = 1 when i ∈M∗, and constraints (2) by zik = qik when k ∈ K∗, i ∈Mk.

3.1.1. Compact formulations

Formulation (1)–(8) can not be implemented through a commercial solver even for small-size

instances since the number of constraints (5) is exponential in the size of M . However, there exist other

subtour elimination constraints that yield, expanding the variables subspace, TPP formulations with a

polynomial constraints cardinality (compact formulations). The Miller-Tucker-Zemlin (MTZ) and the

commodity flow (CF) formulations can be directly inherited from TSP and adapted to this context.

Unfortunately, in general, compact formulations have very weak continuous linear programming (LP)

relaxations with respect to the formulations with an exponential number of constraints.
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Let us introduce a non-negative variable ui for each supplier i ∈M representing the total number

of suppliers already visited when leaving supplier i. Then, the MTZ formulation (Miller et al., 1960)

for the TPP can be obtained by substituting inequalities (5) with the following inequalities

ui − uj + |M |xij ≤ |M | − 1 i, j ∈M, i 6= j (9)

that prevent the creation of subtours by controlling the order of visit of the suppliers.

Another option is to define a non-negative flow variable fij for each arc (i, j) ∈ A representing the

quantity of a commodity on the vehicle when it leaves supplier i and arrives in j. Then, the single-CF

formulation for the TPP can be obtained by substituting inequalities (4) and (5) with:∑
j∈M

f0j =
∑
k∈K

dk (10)

∑
(i,j)∈δ+({h})

fij −
∑

(i,j)∈δ−({h})

fij = −
∑
k∈K

zhk h ∈M (11)

fij ≤ xij
∑
k∈K

dk (i, j) ∈ A. (12)

The connectivity requirement is imposed by creating, through flow variables, a path stemming from

the depot. More precisely, for constraint (10), a single commodity is sent from the depot in an amount

equal to the total demand
∑

k∈K dk and, for constraints (11), each visited supplier i absorbs an amount

equal to the quantity purchased
∑

k∈K zik. Inequalities (12) states that a positive flow fij can be sent

along arc (i, j) only if it is traversed (xij = 1). Other similar compact formulations based on two or

even multi-commodity flow exist (see Gutin and Punnen, 2002) but, for sake of space, we skip their

description. Anyway, their application is quite straightforward.

3.1.2. Valid inequalities

The LP relaxation of (1)–(8) can be strengthened by using valid inequalities derived from some of

its subproblems. First, constraints (4)–(7) are the ones of the Cycle Problem (a TSP generalization

in which only a subset of vertices must be visited) thus, e.g., the lifted cycle D+
k and D−k inequalities

(Balas and Oosten, 2000) are valid for the ATPP. Second, constraints (2), (3), (7), and (8) define

an UFLP with upper bounds on the customer facility variables. When qik = dk, ∀k ∈ K, i ∈ Mk,

valid inequalities for this subproblem, also valid for the TPP, can be obtained from the Set Covering

polytope (Balas and Ng, 1989).

There also exist some TPP specific valid inequalities. For example, the zSEC inequalities∑
(i,j)∈δ−(M ′)

xij ≥
1

dk

∑
i∈M ′

zik k ∈ K, M ′ ⊆Mk, (13)

state that at least one arc must enter into the subset M ′ whenever some amount of any product k

is purchased in a market belonging to M ′ ⊆ Mk. Inequalities (13) can be easily strengthened by

replacing dk with min{dk,
∑

i∈M ′ qik}.
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3.2. Symmetric TPP

The STPP is defined over a complete undirected graph GU = (V,E), where E := {e = [i, j] : i, j ∈
V, i < j} is the edge set and a traveling cost ce is associated with each edge e ∈ E. Let xe, e ∈ E, be

a binary variable taking value 1 if edge e is crossed, and 0 otherwise. Let also δ(V ′) := {[i, j] ∈ E :

i ∈ V ′, j ∈ V \ V ′} for any subset V ′ of nodes. Then, the STPP can be defined as follows:

(STPP ) min
∑
e∈E

cexe +
∑
k∈K

∑
i∈Mk

pikzik (14)

subject to constraints (2), (3), (7), (8), and∑
e∈δ({h})

xe = 2yh h ∈M (15)

∑
e∈δ(M ′)

xe ≥ 2yh M ′ ⊆M,h ∈M ′ (16)

xe ∈ {0, 1} e ∈ E. (17)

Due to the use of an undirected graph, now in the degree constraints (15) two edges must be incident

to each visited vertex, and in the connectivity constraints (16) at least two edges must be incident to

each subset of suppliers containing a visited one.

Since both MTZ and CF formulations need the orientation of arcs to work correctly in eliminating

subtours, a STPP compact model cannot be obtained by considering an undirected graph. A common

workaround is represented by modeling each edge e = [i, j] ∈ E with two directed arcs (i, j) and (j, i)

with cij = cji = ce and allowing the use of just one arc linking each couple of vertexes by adding

constraints of the type xij + xji ≤ 1 for each i, j ∈ V, i < j.

Concerning valid inequalities for the STPP, arguments similar to the ones dealt with in Section

3.1.2 can be done (Laporte et al., 2003), e.g., the symmetric version of the zSEC cuts is as follows:∑
e∈δ(M ′)

xe ≥
2

dk

∑
i∈M ′

zik k ∈ K, M ′ ⊆Mk. (18)

4. Polyhedral aspects

This section gathers the main polyhedral findings on the TPP (proved, unless otherwise indicated,

in Riera-Ledesma, 2002 or Laporte et al., 2003). We focus on the dimension and facets for the ATPP

polytope A, i.e. the convex hull of all the vectors (x, y, z) that satisfy (2)–(8), and for the STPP

polytope S, i.e. the convex hull of all the vectors (x, y, z) that satisfy (2), (3), (7), (8), and (15)–(17).

4.1. Dimension of ATPP and STPP polytopes

Let Ā := {(x, y, z) ∈ A : yi = 1, ∀i ∈ V } be the ATPP polytope in which all suppliers have to be

visited, Āx and Āz be the projection of Ā onto the affine space of x and z variables, respectively. Āx is

the asymmetric TSP polytope and dim(Āx) = |A| − 2|V |+ 1 (Grötschel and Padberg, 1985), whereas

Āz is the polytope of an Assignment Problem generalization and dim(Āz) =
∑

k∈K\K∗(|Mk| − 1).

Since Ā := Āx×{y : yi = 1, ∀i ∈ V }×Āz it holds that dim(Ā) = |A|−2|V |+1+
∑

k∈K\K∗(|Mk|−1).
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To extend this result onto A, an intermediate polytope Ā(F ) := {(x, y, z) ∈ Ā : yi = 1,∀i ∈ V \ F}
is introduced for all F ⊆ V . It can be shown that Ā(∅) = Ā, Ā(V ) = A, and, for any given F ⊆ V ,

dim(Ā(F )) = |A|− |V |+ 1 +
∑

k∈K\K∗(|Mk|−1) + |F |. The dimension of the ATPP polytope follows:

Theorem 4.1. dim(A) = |A| − |V |+ 1 +
∑

k∈K\K∗(|Mk| − 1).

The dimension of S only slightly differs from A. The difference comes from the underlying circuit

problems that contains a different number of linear independent vectors.

Theorem 4.2. dim(S) = |E|+
∑

k∈K\K∗(|Mk| − 1).

Finally, recalling the meaning of M∗ (i.e., the set of necessary suppliers in any feasible TPP

solution), one can take it into account in the definition of ATPP and STPP polytopes. In such a case,

the dimensions in Theorems 4.1 and 4.2 have to be reduced by |M∗|.

4.2. Facet-defining valid inequalities for ATPP and STPP polytopes

Some facets of A and S can be obtained from facets of particular projected polytopes through a

procedure called sequential lifting that allows to derive and prove the following results.

Let us start from some trivial inequalities: inequality xij ≥ 0 (xe ≥ 0) defines a facet of A (of S) for

every (i, j) ∈ A (for every e ∈ E); inequality yi ≤ 1 defines a facet if and only if i ∈ V \M∗; inequality

zik ≥ 0 defines a facet for each k ∈ K \K∗ and i ∈Mk with |Mk| ≥ 3 and dk <
∑

j∈Mk\{i} qjk.

Other facets can be obtained for A. For example, by lifting the subtour elimination constraints it

derives that, for each M ′ ⊂M ,

•
∑

(i,j)∈A:i,j∈M ′ xij ≤
∑

h∈M ′\{l} yh defines a facet ∀l ∈M ′ if M ′ ∩M∗ = ∅, and

•
∑

(i,j)∈A:i,j∈M ′ xij ≤
∑

h∈M ′ yh − 1 defines a facet if M ′ ∩M∗ 6= ∅,

In the same spirit, it is possible to derive facet-defining inequalities for S. For example, for any

M ′ ⊂M with 2 ≤ |M ′| ≤ |M | − 1,

•
∑

e∈δ(M ′) xe ≥ 2 defines a facet if M ′ ∩M∗ 6= ∅ or |M ′| = |M | − 1 , and

•
∑

e∈δ(M ′) xe ≥ 2yi defines a facet for any i ∈M ′, otherwise.

Interesting enough, for the particular case with |M ′| = |M | − 1, constraints x[0,i] ≤ yi also defines a

facet of S for all i ∈ V , whereas for |M ′| = 2 it holds that, for any e = [i, j] ∈ E,

• xe ≤ 1 defines a facet if i, j ∈M∗,

• xe ≤ yi + yj − 1 defines a facet if i, j 6∈M∗ and ∃k ∈ K such that
∑

s∈Mk\{i,j} qsk < dk,

• otherwise, xe ≤ yi and xe ≤ yj define facets when i 6∈M∗ and j 6∈M∗, respectively.

Other facets can be obtained from the Assignment Problem polytope, e.g., zik ≤ qikyi defines a facet

∀k ∈ K \K∗ and ∀i ∈Mk if i 6∈M∗, otherwise zik ≤ qik defines a facet when qik < dk.
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5. Exact solution approaches

In this section, we review algorithms to obtain TPP exact solutions. Because of its long history, the

TPP has experimented the same evolution than other classical combinatorial problems, starting with

Dynamic Programming (DP) in the early 70’s, passing through the use of Mathematical Programming

(MP) techniques in the late 90’s, and concluding (at least up to now) with Constraint Programming.

5.1. Early approaches

The first exact algorithm for the U-ATPP was proposed by Buzacott and Dutta (1971) and focused

on the problem described by Burstall (1966) in the context of machine scheduling for the manufacture

of steel tubes. The size of the instances considered was pretty small. In a first attempt, the authors

tried to solve an ILP formulation, concluding that the approach was not very useful because “a large

number of subtour constraints were necessary even for a reasonably small sized problem”. It should

be noted that this statement was written long before the spreading of the dynamic separation of

constraints started with Padberg and Rinaldi (1991). Hence, following the main principles of that

time (see, e.g., the survey on the TSP by Bellmore and Nemhauser, 1968 already suggesting the use of

DP for problems with less than 13 cities), Buzacott and Dutta (1971) finally proposed a DP algorithm

to solve the problem. In their DP method, at each stage, a configuration-job pair is added to the

optimal scheduling sequence. At the end the algorithm provides the minimum cost sequence which

processes all required jobs. The algorithm was written in FORTRAN IV and executed on a IBM Model

360/65. The authors claimed to have achieved, for small and medium sized instances (12-15 jobs and

any practical number of configurations) exact solutions or solutions within the 10% of optimality gap.

After a decade, Ramesh (1981) introduced a lexicographic search algorithm for the U-STPP where

each solution is represented as a sequence of symbols, and searching for an optimal solution is analogous

to search for a specific word’s location in a dictionary. Solutions are generated starting from a partial

word in some hierarchy which reflects an analogous order in their values. Each partial word defines

a block of solutions, and for each block of solutions a lower bound is computed. If this lower bound

exceeds the value of the best known solution, the entered block of words is rejected because it does not

lead to promising solutions, and the next block is explored. The computational experience, performed

on a non specified machine, solves to optimality instances up to 12 suppliers and 10 products, and 8

suppliers and 22 products. However, the computed lower bound only depends on the traveling costs

from different suppliers to the depot and it is independent from the purchasing costs. This aspect

clearly influences the quality of the bound, causing poor computational results.

5.2. Branch-and-bound based approaches

The first branch-and-bound algorithm was presented by Singh and van Oudheusden (1997). Their

main idea is to break up the set of all possible tours into smaller subsets, and to calculate, for each of

them, a lower bound on the sum of the traveling and purchasing costs. This lower bound is computed

by solving a UFLP obtained by removing the routing optimization constraints from TPP. The bounds

guide the partition of the subsets and allow to identify an optimal solution when a subset that contains
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a single tour is found (the relative bound has to be, in fact, less than or equal to that of all other

subsets). They solved to optimality (on a IBM 3031 ) ATPP instances with up to |M | = 20 and

|K| = 100 or |M | = 25 and |K| = 50, and STPP instances with up to |M | = 20 and |K| = 30.

A significant advance in the size of the problems solved to optimality occurred with the idea

of exploiting the dynamic separation of constraints (i.e., along the branch-and-bound tree) by the

branch-and-cut technique. More precisely, the TPP model is initially relaxed and solved without

the subtour elimination constraints, then only those inequalities that cut off the linear relaxation

optimal solution of the current branch-and-bound node are added to the model through separation

algorithms as they were additional valid inequalities. Laporte et al. (2003) approached the R-STPP

and U-STPP solution by this technique also using some other valid inequalities. This article proposes

a polyhedral study of the problem combining the cycle and set-covering polytopes (that leads to

the characterization of the valid inequalities already presented in Sections 3.2 and 4.2), and exact

and heuristic separation procedures for the most effective valid inequalities found. Along with the

separation of subtour elimination constraints, the authors also introduce the separation of the zSEC

inequalities, the 2-matching inequalities (Edmonds, 1965), and other mechanisms such as the dynamic

generation and deletion of variables through a simple pricing. With these components the branch-

and-cut algorithm (coded in C++ and using ABACUS linked to Cplex 6.0 as a framework) solved

to optimality, on a Pentium 500MHz, families of instances taken from the literature as well as new

random instances up to 200 suppliers and 200 products.

Since the just presented approach has become a consolidated starting point in developing exact

methods for TPP-like problems that deals with an exponential number of subtour elimination con-

straints (see, e.g., Batista-Galván et al., 2013, Beraldi et al., 2016, or Manerba and Mansini, 2015), we

briefly present how inequalities (16) and zSEC inequalities (18) can be separated efficiently. Both the

procedures are exact and are based on the solution of max-flow/min-cut problems for which different

efficient polynomial-time algorithms can be found in the literature (see, e.g., Goldberg and Tarjan,

1988, Goldberg and Rao, 1998). In the following, we indicate as x∗, y∗, and z∗ the value of the x, y,

and z variables in the optimal solution of the continuous relaxation problem, respectively.

Separation procedure for (16): Consider a graph ḠU = (V,E) where a capacity x∗e, corresponding

to the current linear relaxation optimal solution, is associated with each edge e ∈ E. Then, given a

supplier h, such that y∗h 6= 0, the most violated inequality (16) corresponds to the partition (M ′, V \M ′)
associated with a minimum-capacity cut in ḠU separating node 0 from h, with h ∈M ′. This cut can

be found in O(|M |3) by computing a maximum flow in ḠU from node 0 to node h, hence the entire

procedure takes O(|M |4) time. The introduction of an inequality (16) is effective (i.e., it excludes

some fractional solutions) only if the resulting maximum flow is less than 2.

Separation procedure for (18): An exact separation of zSEC inequalities can be obtained in a

similar way by solving ad-hoc max-flow problems. The procedure is a little bit trickier, but preserves

a polynomial-time complexity. More precisely, given a product k, construct a graph GkU := (V k, Ek).

where the vertex set V k contains the depot 0, the set of suppliers Mk, and an additional dummy

vertex v̄, and the edge set Ek contains all the edges e ∈ E of the original graph GU with capacity
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x∗e, plus all the edges e = [i, v̄], i ∈Mk, with capacity 2z∗ik/dk. Then find the partition (M ′, V k \M ′)
associated with a minimum-capacity cut in GkU and separating the depot 0 and the dummy vertex v̄,

with v̄ ∈M ′. If the capacity of this cut is at least 2, then the LP solution satisfies all the inequalities

(18), for a given k. Otherwise, the set M ′ \ {v̄} yields the most violated inequality (18). Since a

max-flow problem has to be solved for each product, the entire procedure takes O(|K||M |3) time.

Few years later, Riera-Ledesma and Salazar-González (2006) extended the described branch-and-

cut algorithm to solve asymmetric instances. To this aim they proposed, along with the exact sep-

aration procedures for (5) and (13), that are actually analogous to the explained procedures for the

symmetric variant, the heuristic separation of specific ATPP valid inequalities. The resulting branch-

and-cut approach achieved similar performance with respect to its symmetric counterpart. In fact,

it was able to solve to optimality, on a AMD 1333Mhz, the asymmetric instances proposed by Singh

and van Oudheusden (1997), and new random instances up to 200 suppliers and 200 products. In the

same paper, the authors also detail a procedure to transform an ATPP instance into a STPP one.

5.3. Recent approaches

The DP paradigm has reappeared as solution method in Gouveia et al. (2011) for a U-ATPP

variant in which both the number of suppliers to be visited and the number of items to purchase

at each supplier are limited (side-constraints). The authors first test, on a Pentium IV 3.2GHz, the

performance of Cplex 11.0 tackling a compact ILP formulation of the problem and discover that exact

solutions could be achieved in reasonable time only for instances with up to 100 suppliers. Hence, they

decide to approach the larger size instances through a complex DP algorithm applied to a Lagrangian

relaxation that uses a subgradient optimization procedure to compute the bounds. Due to the expected

exponentially sized state space of the proposed DP, a state space relaxation method is used to provide

a lower bound on the cost of the optimal solution. Moreover, a Lagrangian greedy heuristic that

attempts to transform relaxed solutions into feasible ones is also proposed. Computational results

for instances with up to 300 suppliers show reasonably small gaps between best upper and lower

bound values on the optimal solutions (except for few cases). The restrictions represented by the

side-constraints considered strongly increase the efficiency of the DP process. Tests on unconstrained

benchmark instances show, however, that DP does not lead to the same performance for a plain TPP.

A variant of the U-STPP, similar to the one just described, is studied in Cambazard and Penz

(2012), where the authors establish a bound only on the number of suppliers to be visited. They

propose a new approach based on Constraint Programming that takes advantage of three key sub-

problems of the TPP (namely, the TSP, the p-median, and the hitting problems) by introducing

global constraints to simultaneously handle these core structures. The propagation algorithms are

based again on dynamic programming and Lagrangean relaxation. Eventually, they test, on a Dual

Quad Core Xeon CPU 2.66GHz, the resulting approach solving ad hoc modified instances of similar

size than the ones proposed in Laporte et al. (2003) and finding optimal solutions for some instances

not previously solved. Although this approach was initially designed for solving instances with a small

maximum number of supplier visits, it proves to be surprisingly competitive (differently from what

happened with the work by Gouveia et al., 2011) when applied to the unbounded case.
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6. Heuristic algorithms

This section is devoted to present and categorize all the heuristic approaches proposed for the TPP.

Section 6.1 concerns constructive and simple local search methods, Section 6.2 discusses metaheuristic

frameworks, and Section 6.3 presents the only existing approximation algorithm.

6.1. Basic heuristics

Basic heuristics for the TPP include constructive procedures, simple local search methods without

a defined higher-level strategy to recover from local optima, and a last class concerning heuristics

based on decomposition that exploits the presence of different subproblems. In the presentation of

the main results, we follow the refining process these methods have experienced in the literature.

6.1.1. Constructive methods and variants

All constructive heuristics for the TPP are based on the concept of saving to measure the conve-

nience in terms of total decrease of purchasing costs net of the possible traveling costs increase, when

inserting a new supplier in a solution. The first saving algorithm for the U-TPP was proposed by

Golden et al. (1981). The algorithm, called Generalized Savings Heuristic (GSH), is a greedy construc-

tive procedure that starts from an initial tour containing only the depot, and that adds one supplier at

each iteration. The very first added supplier is the one that sells more products at the cheapest prices

(ties are solved by choosing the supplier that yields the minimal total price), and a cycle starting and

ending at the depot and visiting only this supplier is created. Then, at each iteration, an unselected

supplier is added to the existing cycle between the two adjacent suppliers that allow its cheapest

insertion provided that this choice maximizes the saving, and if such a saving is strictly positive.

After the insertion, the purchasing plan for each visited supplier is updated according to the saving.

The algorithm terminates when no suppliers satisfy the positivity condition on savings. Note that,

the procedure works correctly only if we consider, for each product k not available in a supplier i, a

fictitious purchasing cost pik = p, where p� max{maxi∈M,k∈K{pik},max(i,j)∈A{cij}}. The algorithm

is illustrated through a simple example with 4 markets and 8 products taken from Ramesh (1981).

GSH is easy to implement, and requires O(max{|K|, |V |}· |V |2) operations in the worst case. How-

ever, it works badly if the problem contains a supplier which sells most of the products and is located

far apart from the others. To prevent this drawback, Ong (1982) proposes the Tour Reduction Heuris-

tic (TRH): the algorithm starts from a tour involving a subset of suppliers satisfying the products

demand, and iteratively drops the supplier yielding the maximum reduction of total costs (measured

as the reduction of traveling costs net of the possible increase in purchasing costs) until a reduction

is possible. Effectiveness and complexity of TRH both depend upon which procedure is used to select

the initial set of suppliers and to create the relative tour (that actually corresponds to solve a TSP).

Ong (1982), for example, suggests to incorporate TRH into GSH, applying the former as soon as a tour

containing all products is generated by the latter.

Another constructive heuristic that considers the products one by one, called Commodity Adding

Heuristic (CAH), is proposed for the U-TPP by Pearn (1991). CAH starts with an initial solution

containing only the depot and the supplier that minimizes the total cost for purchasing the first
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product. At each iteration, a new product is considered and the convenience to purchase the product

in one of the suppliers already included in the current solution or to add another supplier is evaluated.

The algorithm terminates when all the products have been considered.

During the years, many improvements have been proposed for the basic version of GSH, TRH, and

CAH (Ong, 1982, Pearn and Chien, 1998, Boctor et al., 2003, Teeninga and Volgenant, 2004). A first

common practice, which seems to be quite effective, is to frequently re-sequence the order of the

suppliers visited in a solution by using a TSP heuristic. Classical cheapest-insertion and the Lin-

Kern heuristics (Lin and Kernighan, 1973) have been preferred to this aim. Other variants consider

a different starting cycle for the heuristics, or a different selection of a supplier if ties occur. For

example, Pearn and Chien (1998) suggest the following variants for all the described heuristics:

• two GSH variants: the first one is a parameter-selection GSH (PS-GSH) where the term reflecting

the purchase saving at a given supplier is multiplied by a weight. The method repeatedly solves

the instance with seven different weight values. The second one is a tie-selection GHS (TS-GSH)

where if a tie occurs in the first supplier selection the one closest to the depot is chosen.

• two CAH variants: the first one uses different random orders of the products to generate sev-

eral complete solutions and then selects the best one. The second variant generates different

sequential orders for the products instead of the random ones.

• two TRH variants: an adjusted-cheapest TRH (AC-TRH) where the initial set of suppliers contains

the set M of suppliers selling at least one product at its lowest price and all suppliers for which

the price of one or more products augmented by their travel cost to the depot is minimal. In

the nearest-cheapest TRH variant (NC-TRH), the initial set includes, in addition to M , the closest

v suppliers to the depot. The method is run with five different values of v.

CAH with random orders results to be the best method on the set of the 30 sample problems generated

by the authors. More recently, Boctor et al. (2003) extend CAH for solving the more general R-TPP

including all the variants already described (re-sequencing, weighted components in the savings, etc.).

Finally, Laporte et al. (2003) describe a market adding heuristic (MAH) that gradually extends

a cycle by inserting at each step a new supplier selling a product the demand of which is not fully

satisfied. MAH determines in which market each product is available at the lowest price, and among these

minima, adds to the tour (according to a standard maximum-saving rule) the market corresponding to

the highest product price. Once a feasible cycle has been obtained, it is post-optimized by iteratively

acting on the set of suppliers in the solution, the assignment of products, and the routing cost to visit

them. The authors also apply MAH to fractional LP solutions (LP-MAH), choosing as initial cycle the

one containing the edges whose associated variables have the largest values. A similar heuristic is

proposed by Infante et al. (2009). In their MAH constructive phase, the farthest market from the ones

in the current tour is added, whereas in a following improvement phase, markets are eliminated in a

TRH fashion according to saving in purchasing or traveling costs.
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6.1.2. Heuristics based on problem decomposition

Some procedures base their effectiveness on decomposing the TPP by exploiting its multi-problem

nature (see Figure 1). These methods consist of three phases. First, a subset of suppliers has to be

chosen. Then, the problem is split into a products assignment problem on the selected suppliers to

minimize the purchasing costs, and a problem of finding a visiting order for the suppliers to minimize

the traveling costs. Consequently, the decomposition algorithms proposed in the literature differ for a)

the method used to generate promising subsets of suppliers, and b) the specialized procedures adopted

to efficiently solve the two subproblems. The products assignment is actually an easy problem that can

be optimally solved by simple inspection or by means of an LP solver. The tour definition corresponds

instead to a TSP, that is NP-hard itself. However, a plethora of exact and heuristic methods, with

well-studied efficiency and effectiveness, is available in the literature for its solution.

The supplier selection phase appears the most challenging, given the intractability of exhaustively

exploring all the possible subsets of suppliers. Very early, Burstall (1966) introduced a reduction

procedure (RED) for the U-TPP that, combined to a branching tree, is able to generate all the smallest

subsets of suppliers satisfying products demand. The final solution is obtained by solving the two

relative subproblems for all the generated subsets, and comparing the costs. This method performs

well under the strong assumption that the price differences for a given product in various suppliers are

small compared to the traveling costs between them. Lomnicki (1966) commented this work showing

that a simpler method based on boolean algebra can be used to the same purpose.

More recently, Beraldi et al. (2016) propose a Beam Search (BS) strategy to explore a tree where

each node represents a subset of suppliers (the method has been actually conceived for solving the

deterministic counterpart of a stochastic R-TPP). The root node has all the suppliers, whereas each

child node has a supplier less than the father. In order to reduce the exploration, at each level of

the tree, only a promising subset of nodes (beam set) is taken into account for generating children.

Promising nodes have to satisfy products demand and are chosen according to the joint cost evaluation

of the TSP on the selected suppliers solved with a recent implementation of the Lin-Kern heuristic

(Helsgaun, 2000) and the purchasing problem. The authors introduce 3 variants of the method. The

first variant, called balanced beam search (BBS), applies to a balanced tree where the nodes in the

beam set are selected using a greedy criterion considering the ones with the best objective value. In

a BS performed on an unbalanced tree, such a selection policy could be poorly effective making the

exploration to terminate prematurely. To overcome this drawback, the authors propose a variant called

probabilistic beam search (PBS) where nodes are ranked according to their value, and then selected

following a probability reflecting the likelihood of generating promising children. In this variant, nodes

not selected to be part of the beam are discarded. Since no backtracking procedure is applied, the

method does not allow to recover from wrong decisions. Hence, the authors propose a third strategy

called PBS with recovery (PBS-R) that considers a secondary beam set containing the nodes with the

best objective function values among the discarded ones. The recovering step is applied only once if,

after two complete level explorations, the incumbent solution value is not updated. The authors show

that BBS has the best performance in terms of quality of the solution, even if this comes at a cost of
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larger CPU times (very often the time limit imposed as stopping rule is reached).

Finally, Cattrysse et al. (2006) decompose the TPP in two subproblems, one corresponding to an

UFLP and the other to a TSP on the subset of suppliers previously selected. The latter problem is

solved heuristically by using a guided local search that penalizes those arcs in a current solution which

are unlikely to be incorporated in a good tour.

6.1.3. Local search methods

Some of the already described constructive methods, if applied to a known feasible solution, can

be seen as local search moves potentially embeddable in a metaheuristic framework. For example, a

combined use of adding and dropping moves (similar to GSH and TRH, respectively) has been proposed

by Voß (1986). Two neighborhoods are defined. In the first one (DROP-ADD), an iteration is defined

by a drop step followed by a number of consecutive add steps that operates on a possible unfeasible

solution until no more improvement of the objective function is possible. The drop step is characterized

by the exclusion of the supplier that gives the best improvement of the objective function value, if

any is possible, or its smallest increase, otherwise. Procedure terminates when any supplier previously

removed is added again to the solution. In the second neighborhood (ADD-DROP), each iteration consists

of an add step (according to a maximum saving rule) followed by a sequence of drop steps.

Boctor et al. (2003) propose three perturbation heuristics (PH) exploring classical TSP as well as

TPP tailored neighborhoods (procedures UPH1 and UPH2 apply to the U-TPP whereas RPH is applied

to the R-TPP). More precisely, the methods are post-optimization schemes in which an improvement

procedure is applied to a perturbed solution. It is evident how the interest of working with a perturbed

solution, although not formalized in a metaheuristic, aims to help the search process to escape from

a local minimum. The PH combine seven basic procedures in different ways, namely single and double

market drop; market add; single and double market exchange; TSP heuristic; cheapest insertion.

Computational results on symmetric Euclidean instances by Laporte et al. (2003) show that both

UPH1 and UPH2 produce solution values within 0.75% of the optimum for |M | ≤ 200 and close to 1% of

the best-known solution value for 250 ≤ |M | ≤ 350. Moreover, all PH also produce smaller optimality

gaps than any other heuristic used in the comparison (CAH, MAH). This is a clear indication of the

quality of these algorithms although the perturbation phase is highly time consuming.

Few years later, Riera-Ledesma and Salazar-González (2005a) generalize the supplier-exchanging

neighborhood through the l-ConsecutiveExchange procedure. The method aims first at reducing the

length of a feasible visiting cycle by removing l consecutive suppliers, and at restoring the feasibility, if

lost, by adding suppliers not belonging to the solution that result convenient according to the classical

saving criterion and by re-optimizing the purchase. An ad hoc data structure, presorted according

to the products price, is used to speed up the insertion of a new supplier in a partial solution. The

authors show the effectiveness of dynamically resizing the neighborhood by reducing l as soon as a

new local optimum is achieved. The main idea is further readopted by Mansini and Tocchella (2009a)

for a R-TPP bounded version in the local search scheme called EJEct and MOve (EJEMO). Actually,

EJEMO is an enhanced local search where the neighborhood is varied during the search by dynamically

changing the value of parameter l and a simple tabu structure is used to avoid cycling.
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6.2. Metaheuristics

A metaheuristic is a master strategy guiding one or more heuristics to find solutions beyond local

optimality. The way in which this strategy works gives rise to several methods that differ for some basic

choices (e.g., the use of adaptive memory, the type of neighborhood construction and exploration, the

number of solutions carried from one iteration to the next). In the following, for each method we focus

on how its general features have been adapted to the TPP also commenting on the computational

results obtained in term of size of the solved instances.

6.2.1. Tabu Search (TS)

Voß (1996) proposes a TS for a U-TPP generalization taking into account a fixed cost for visiting

each supplier. ADD-DROP and DROP-ADD procedures (see Section 6.1.3) are used as local search. The

most interesting contribution in this work is the way tabu tenure is managed through the combination

of two dynamic strategies for tabu list management. The author identifies a solution as a vector

of binary values partitioned into three sets representing respectively forbidden suppliers, uncertain

suppliers for which a decision has not been taken yet, and surely visited ones. When changing solution,

the attributes may be the set of all possible changes in the assignment of values to the binary variables.

Thus the approach is multi-attribute, and since the number of suppliers added and removed in a move

during the search is not static, the multi-attribute move is dynamic. The tabu list management

exploits dynamic interdependencies among memory attributes according to a cancellation sequence

method (CSM) and a reverse elimination method (REM). These interdependencies are the real innovation

with respect to the tabu literature being aspects usually neglected. CSM allows the reversion of any

attribute but one between two solutions to prevent cycling. All attributes between the canceled one and

its recently added complement define a cancellation sequence (C-sequence for short). Any attribute

but one of a C-sequence is allowed to be canceled by future moves. This condition is sufficient but

not necessary to prevent cycling. REM is a strategy that guarantees such a necessary condition by

constructing a residual cancellation sequence (RCS) that contains complements of attributes traced

backed from the running list of encountered solutions. While CSM allows to diversify by imposing

a tabu status to more attributes than needed REM allows intensification better searching solutions

possibly overlooked by CSM. For this reason the author combines the two strategies in a hierarchical

way. The author also makes recourse to a simplified strategic oscillation (SO) allowing for intermediate

infeasibilities when dropping a supplier. The experimental analysis, run over 198 instances, show that

the TS based on a DROP-ADD neighborhood and a CSM dynamic strategy provides slightly better results.

El-Dean (2008) also proposes a TS approach. The work is however very preliminary. The TS is

described in a general way, and the author neither provides a precise definition of what a move is, nor

a clear description of how the method incorporates flexible memory functions to exclude transitions

in forbidden solutions. Local search neighborhood is said to contain a manageable number of feasible

solutions with the objective to completely search it, but its description is not provided. Results are

scant considering few examples with at most 9 suppliers and 5 products.

Finally, a TS for the R-STPP is described in the unpublished work by Mansini et al. (2005).

Neighborhood exploration is based on add and drop moves. Given a current feasible solution, the
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neighborhood consists of O(|K|) solutions, each one obtained by changing the suppliers where a given

product is purchased. More precisely, given the current solution x and a product k, a neighbor solution

is obtained by setting to zero the quantities of product k purchased in the current solution and by

satisfying the product’s demand through the introduction of new suppliers provided they are not

tabu. If the total demand for the product cannot be satisfied by the new suppliers the ones belonging

to the current solution can be used. Suppliers added to the solution become tabu and cannot be

dropped for a given number of iterations. The authors introduce two variants for the TS, one where

long term memory features are taken into account and tabu tenure is managed dynamically, and a

basic one implementing only short term memory search and the tabu list is constant. Frequency-based

memory information is used to drive the search in possibly unexplored regions of the solution space. In

particular, authors endow the suppliers with a counter which represents the number of times a supplier

has been part of a feasible solution. Feasible solutions are post-optimized in terms of traveling costs by

applying GENIUS algorithm (Gendreau et al., 1992). Proposed TS provides, on average, higher quality

solutions with respect to l-ConsecutiveExchange heuristic on the instances by Laporte et al. (2003).

6.2.2. Simulated Annealing (SA)

The only application of SA to the TPP is due to Voß (1996) who investigates its effectiveness

compared to the already described TS. Procedures DROP-ADD and ADD-DROP are used again as local

search. The implementation of the SA is straightforward and the only adaptation to the TPP concerns

the setting of the parameters as the temperature that is chosen to be a problem-dependent value.

For each variant, the method saves the best six solutions and then tries to improve them using local

search procedures. After a predefined number of iterations the tour of the current solution is improved

through a 3-optimal exchange procedure. SA is, on average, outperformed by the TS proposed in the

same paper on the 198 tested instances.

6.2.3. General Random Adaptive Search Procedure (GRASP)

Ochi et al. (2001) exploit the inherent parallelism of a GRASP to develop a new distributed parallel

algorithm for the U-TPP. Since the objective of the work is to test different techniques of parallelism,

the authors do not introduce any new idea in terms of solution methods that typically consists of iter-

ations made up from successive constructions of a greedy randomized solution and subsequent iterative

improvements through a local search procedure. In the construction phase, six different procedures

are considered, namely Add (add the supplier with the current best saving), Drop (drop the market

that allows the best saving), AddGeni and DropGeni (where the selection of the node to add or remove

is computed by using heuristic GENIUS), AddRandom and DropRandom (randomly selecting the supplier

from a candidate list). Moreover, eight different local search procedures are used in the improve-

ment phase. AddSearch and DropSearch correspond to the ones proposed in Voß (1996). Procedure

AddDropSearch adds, in turn, each supplier not in the current solution and then applies DropSearch,

while DropAddSearch does the reverse. SwapSearch swaps pairs of suppliers, NeighSearch selects

and removes p suppliers from the current solution making them forbidden and then applies one of

the previous local search routine, VNSSearch applies NeighSearch in a loop following the paradigm
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of a VNS, and, finally, HybridSearch sequentially applies the first 5 local search procedures until no

improvement is possible. Eventually, the authors implement 48 variants of GRASP by considering

each construction method combined with each local search procedure, and test them on 36 medium-

size instances (see Section 8). The average performance of the best 5 GRASP variants are reported.

The algorithms have been compared with 48 VNS variants and with two implementations of the TS

proposed by Voß (1996) considering procedure REM and CSM, respectively. Sequential GRASP already

obtains better solutions than TS. The parallel implementation for GRASP is straightforward being

each iteration independent from the other. The authors test a static load balance implementation of a

parallel GRASP where the number of iterations of the sequential algorithm are equally divided among

the existing processors, and a dynamic load balance where the charge of each processor changes dur-

ing the search so that faster processes receive a higher number of iterations. Each processor executes

either the same GRASP or a different one giving rise to two variants. Each parallel algorithm is run

for 3 trials with 2000 iterations on 8 and 4 processors using five additional instances of larger size.

Results show that static load balance model works better especially when the number of processors

increases. Quality of the solutions improves with the number of processors, while efficiency is higher

in variants implementing a different algorithm for each processor.

6.2.4. Variable Neighborhood Search (VNS)

In addition to the already described GRASP, Ochi et al. (2001) implement a distributed parallel

VNS exploring a quite new area of research. The sequential VNS combines each of the six construction

methods described for the GRASP with the eight local searches duly adapted to work in a standard

VNS framework. The distributed parallel model applied to the VNS and to a hybrid variant combining

GRASP with the VNS as local search, is akin to the one described for the GRASP. Conclusions on

computational results show that the combined GRASP+VNS, also in parallel implementation, provides

the best performance in terms of efficiency and gets the best solution values in most of the cases.

Other VNS approaches can be found for the TPP with budget constraint (see Section 7.1.2).

6.2.5. Ant Colony Optimization (ACO)

Bontoux and Feillet (2008) address the U-ATPP solution with an ACO combined with different

local search procedures. In the method, a set of traveling ants leave the depot in parallel. As soon as an

ant returns to the depot a new one will leave it. An ant constructs its tour using a heuristic mediated

by information provided by past experience of other ants. The amount of pheromone deposited on

the arcs of the tours depends on the quality of the solution. Arcs with higher level of pheromone will

be preferred thus increasing the probability to visit their suppliers. Since the length of the generated

tours is different, ants are not synchronized and this allows a better pheromone update. In term

of anamorphic component, the method uses different ants according to the value assigned to four

parameters that measure the attraction of the ant to the pheromone, its independence in following its

own path, its avidity in minimizing purchasing costs with respect to traveling costs and the reverse.

These parameters define the probability to select the supplier to visit next from the one the ant is

currently located. To avoid the common drawback of ACO to concentrate pheromone on rare arcs
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the authors introduce a multi-dimensional feature assuming 30 different levels of pheromone. Each

ant leaving the depot in parallel has its own level of pheromone. Finally, with respect to dynamic

features, the method allows to the ant population to evolve by killing ants that provide (also partial)

tours with a cost larger than the value of the best solution found multiplied by a given coefficient

depending on the instance number of the suppliers and products. Initially each ant receives a dote

of ten points. When an ant is cut, its dote is reduced by one point and it restarts from the depot.

When dote is totally consumed, the ant is definitely cut down and a new ant defined as a clone of

the ant having found the best-known solution will leave the depot. If an ant improves upon the best-

known solution, its dote is increased to five times its initial value. In this way best ants are promoted,

while ants visiting uninteresting parts of the solution space are eliminated. A similar reserve of points

is assigned to each level of pheromone. Every time an ant is cut, its level is subject to 1 penalty

point. When a pheromone level point reserve has been exhausted, the level is deleted. This allows

to concentrate on the more promising levels and to preserve diversity deletion is stopped when the

number of levels goes down to a predefined value. The method uses different local-search procedures

including 2-Opt, simplification (this an improvement procedure that redefines where to buy products

in a solution according to the best prices and eliminate unnecessary suppliers), insertion and drop. All

procedures are applied in sequence on the tour obtained when an ant comes back to the depot. They

also introduce a dropstar procedure, that determines, by keeping the ordering of the tour, the optimal

subsequence of suppliers, consecutive or not, that should be dropped. Finding this subsequence is

NP-hard reducing to solve a set covering problem. The authors tackle the problem through a DP

recursion applied to a graph obtained from the original tour and inspired to the algorithm proposed for

the elementary shortest path problem with resource constraint in Feillet et al. (2004). The proposed

ACO has been tested on the Euclidean instances for the U-TPP by Laporte et al. (2003), running

with a time limit of 1 hour and for 5 trials. It improves the best-known solutions in 48 out of 51 non

closed instances. Unfortunately, although dropstar represents an interesting part of the procedure,

the experimental results do not allow an effective performance evaluation.

6.2.6. Late Acceptance Hill-Climbing (LAHC)

LAHC is a quite recent metaheuristic based on the idea to delay the comparison between neighbor-

hood solutions allowing instead the comparison between candidate solutions and a solution that was

current several iterations ago. This late acceptance strategy avoids to get stuck in a local optimum.

Goerler et al. (2013) apply LAHC to the U-STPP. The method starts with an initial feasible solution

and then applies an hill climbing procedure without comparing visited solutions but memorizing them

in a list of predefined length, called fitness array. Contrary to a pure hill climbing method, LAHC

compares a candidate not to its direct previous current solution but to the last element of the fitness

array. If accepted the candidate is inserted in the list and the last element removed. Simple strategy

are used to avoid, from a computational point of view, the cost of shifting the whole list. The initial

solution is constructed with a nearest neighborhood algorithm where suppliers are inserted ignoring

purchasing costs, then once a tour is obtained the method decides which suppliers to drop maintaining

feasibility and reducing traveling and purchasing costs. The fitness list is initialized with the value of
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the initial solution in all its elements. Before applying comparison the method uses two local search

methods the l-ConsecutiveExchange, and the random addition of suppliers if the solution is not

feasible. Then a TSP heuristic tries to improve the obtained solution in terms of traveling costs by

changing the order of visit to the suppliers. At this point the comparison is applied possibly updating

the fitness list and the sequence of local search procedures is repeated. Algorithm has been tested on

Class 1 instances (see Section 8). Results are interesting: 25 instances with 50 to 250 products have

been solved to optimality. Also in 25 large instances (with a number of products from 300 up to 500),

the results show, that the algorithm achieves optimal solutions or small optimality gaps.

6.2.7. Genetic algorithms(GA)

Ochi et al. (1997) propose for the U-ATPP a parallel GA called GENPAR, based on the island

model. The population is partitioned into several subpopulations which evolve in parallel and peri-

odically get in touch by migration of individuals among islands. A basic component of the method

is the permutation consisting in a purchasing order represented by a vector where the i-component

indicates the supplier where product i is purchased. The first permutation is generated using GSH

and then distributed among all the processors. To guarantee a better search in the solution space

each processor modifies the initial permutation by generating additional ones through the change of

a segment (window) of the initial purchasing order. Each processor can only change the elements

associated with its window and retains the remaining part of the permutation. The number of new

permutations generated by a processor depends on the size of the assigned window. Each processor

can also update permutations by applying the windows switching. The central part of the algorithm

consists in 3 operators, namely, the selection, the crossover and the mutation (Ochi et al., 1995) and

based on minimization of the item cost in the offspring. In particular p parents generate p
2 children.

The worst parent is then compared with the generated child and if the latter better fits it is substituted

to the former. In case the child is worse it can be accepted and the switch implemented with a given

probability depending on the number of implemented substitutions parent/child. A 2-opt heuristic is

then applied to the best generated individual to improve solution value. The migration process for

each processor consists in sending/receiving the best solution to/from all the other subpopulations.

Then a recombination process between the best local solution and each migrated solution takes place.

If the resulting offspring is better, then the local one is substituted with it. Tests have run on a

8-processor SP/2 using instances with up to |M | = 500 and |K| = 500. Results show that, while the

performance of the parallel method with respect to its sequential variant on a single processor is only

slightly better in terms of solution quality, the CPU time improvement is quite impressive.

Finally, Goldbarg et al. (2009) propose a trans-genetic algorithm (TA) inspired by two major

evolutionary forces, namely, the horizontal gene transfer (the acquisition of foreign genes by organisms)

and the endosymbiosis (the mutually beneficial relationship between organisms which live one, the

symbiont, within another, the host). TA searches the solution space resembling the information

sharing process between a host and a population of endosymbionts, in which each one represents a

sequence of visited suppliers. Implicitly, products are purchased in the visited suppliers that offer

them at the lowest price. The population of candidate solutions evolves by means of two vectors that
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manipulate chromosomes trans-genetically using information also from the host’s context. Basically,

these mutation operators smartly use already presented ideas (dropping and adding markets, saving

criteria, TSP re-optimization heuristics), but the overall algorithm is able to outperform, on instances

with up to 300 suppliers and 200 products, approaches presented in Riera-Ledesma and Salazar-

González (2005a) and Bontoux and Feillet (2008) and to find 26 new solutions for non-closed instances.

6.3. Approximation algorithms

Ravi and Salman (1999) proposed the only existing approximation algorithm with a performance

guarantee for the metric TPP special case, i.e. for a STPP in which all edge costs fulfill the triangle

inequality. Their poly-logarithmic worst-case ratio algorithm finds, in polynomial time, a solution

whose cost is max{(1 + ε), (1 + ε)O(log3 |V | log log |V |} times the optimal TPP cost, for any ε > 0.

The algorithm is based on rounding procedures for the LP relaxation solution of a bi-criteria version

of the TPP, and uses known results on the closely related Group Steiner Tree problem. The authors

also produced a constant-factor approximation algorithm for the TPP special case with metric and

proportional costs (that models the ring-star network problem presented in Section 2.3).

7. Main TPP variants

As it happens for other problems, the basic setting of the TPP can be complicated creating inter-

esting variants or including additional constraints. In Section 7.1 we present all the TPP deterministic

variants whereas in Section 7.2 works concerning the introduction of uncertainty in the problem data

are analyzed. Finally, contributions about the multi-vehicle TPP are presented in Section 7.3.

7.1. Deterministic variants

We survey the TPP seen as a bi-objective problem, some variants involving the introduction of

side-constraints, and some others where the changes in the TPP structure are more significant. In

order to make more clear the definitions of these variants we denote by σ = (V (σ), A(σ)) a feasible

TPP solution visiting the vertices V (σ) ⊆ V and traversing the arcs in A(σ) ⊆ A, and by P the set

of all feasible solutions for a given TPP instance. Then, we write TPP := min{f1(σ) + f2(σ) : σ ∈ P}
where f1(σ̄) =

∑
(i,j)∈A(σ̄) cij and f2(σ̄) =

∑
k∈K p

∗
k represent the routing and the purchasing cost

associated with a σ̄, respectively, and where, for each product k ∈ K,

p∗k = min
∑

i∈Mk∩V (σ̄)

pikzik :
∑

i∈Mk∩V (σ̄)

zik = dk, zik ≤ qik, i ∈Mk ∩ V (σ̄).

7.1.1. The bi-objective TPP (2TPP)

In the basic TPP it is assumed that f1 and f2 can be summed up to a single objective function.

Unfortunately, this sum does not make a sense in certain applications (e.g., f1 may be measured in

distance or time units and f2 in currency). Moreover, even if both costs have a similar nature, these

measures may not be directly comparable, and a trade-off frequently characterizes the two objectives

since reducing one may imply increasing the other. For this reason, few works been have focused

explicitly on the bi-objective TPP, that is 2TPP:= min {(f1(σ), f2(σ)) : σ ∈ P}. The approximation
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algorithm by Ravi and Salman (1999) already described (see Section 6.3) was applied to the 2TPP.

Later, Riera-Ledesma and Salazar-González (2005b) approach the problem proposing an exact algo-

rithm that explores by a binary search the objective space determining Pareto optimal solutions. Each

step of the algorithm solves, by a variation of the branch-and-cut proposed in Laporte et al. (2003),

the problem min {ωf1(σ) + (1− ω)f2(σ) : σ ∈ P, f1(σ) ≤ ε1, f2(σ) ≤ ε2} . During each resolution the

set of dynamic constraints generated is stored in a cut pool in order to be used in further stages. This

way, the algorithm speeds up the global resolution of the problem because it does not need to separate

constraints previously used. The algorithm is able to solve instances up to |M | = 100 and |K| = 200

using a 500MHz Pentium computer.

7.1.2. TPP with upper bound restrictions

The most studied variant of this type, the TPP with budget constraints (TPP-B), restricts the

total purchasing cost by a constant threshold, i.e., TPP-B := min {f1(σ) + f2(σ) : σ ∈ P, f2(σ) ≤ B}.
The TPP-B is inspired by real applications in telecommunications network design. First, notice

that both the works described in Section 7.1.1 use this problem as an intermediate step to solve the

2TPP. In particular, Riera-Ledesma and Salazar-González (2005b) show that the weak LP-relaxation

induced by budget constraints produces, in their branch-and-cut algorithm, branching trees with a

conspicuous number of nodes. This motivated Mansini and Tocchella (2009a,b) to propose VNS-based

metaheuristics for both the U-TPP-B and the R-TPP-B where only the traveling costs are minimized.

The authors develop a Multi-start VNS (MVNS) generating a certain number of random solutions in

each neighborhood before a new neighborhood is taken into account. The method analyzes increasing

neighborhoods and use, as local search scheme a modification of the EJEMO algorithm. Given an initial

solution, a neighborhood solution is generated by inserting external random suppliers according to the

cheapest insertion rule. Proposed VNS is tested on Euclidean instances in Laporte et al. (2003) duly

modified to insert a budget constraint.

Other TPP variants with similar restrictions exist. The ATPP where the number of visited sup-

pliers and the number of items bought per supplier are limited is studied in Gouveia et al. (2011).

The problem corresponds to min {f1(σ) + f2(σ) : σ ∈ P, f3(σ) ≤ D, f4(σ) ≤ H} where, for a given σ̄,

f3(σ̄) = max

{∑
k∈K

zik : i ∈ V (σ̄) ∩Mk

}
, f4(σ̄) = |V (σ̄)|.

These constraints are motivated from a production planning case study involving a furnace (the multi-

purpose machine) in which jobs have to be treated at different temperatures (configurations).

Finally, Cambazard and Penz (2012) only establish a bound on the number of visited suppliers.

The solution methods of all the cited works have been already described in Section 5.3.

7.1.3. TPP with multiple stacks and deliveries (TPPMSD)

The TPPMSD, introduced by Batista-Galván et al. (2013), is a generalization of the double TSP

with multiple stacks (DTSPMS) that is a one-to-one pickup-and-delivery single-vehicle routing problem

which performs the pickup operations before the deliveries, and loads the collected products into a

23



capacitated vehicle as they are picked up (Petersen and Madsen, 2009). This problem finds application

in those situations where the pickup and delivery regions are far away one from the other, and the

transportation cost between both regions can be considered as fixed thus not part of the optimization.

The TPPMSD generalizes the DTSPMS considering that each product is offered in several pickup

locations at different prices. The pickup locations are now seen as markets and therefore not all need

to be visited. Delivery locations represent customers, each requiring a product, and all of them must

be visited by the vehicle. The problem has to select a subset of pickup locations (to purchase the

products), to determine a simple tour visiting them taking into account the order in which products

are loaded, and to design a Hamiltonian tour which visits the delivery locations. The aim is to

minimize the purchasing cost plus the total routing cost, subject to the vehicle loading constraints.

The authors formulate the TPPMSD as a MILP, propose valid inequalities, and adapt some cuts

previously defined for the DTSPMS. Their branch-and-cut algorithm has been tested on 240 instances

adapted from the literature using a Intel(R) Core(TM)2 6700 @ 2.66GHz computer with 2GB RAM.

The computational experience evaluates the impact of their cuts, and shows that instances with up

to |K| = 24 and |M | = 32 can be solved to optimality.

7.1.4. TPP with Total Quantity Discount (TPP-TQD)

Manerba and Mansini (2012a) complicate the R-TPP by introducing total quantity discount (TQD)

policies for the purchases. According to this policy, the interval in which the total quantity purchased

lies determines the discount applied by the supplier to the total purchase cost. More precisely, for each

supplier i ∈M , a set Ri = {1, . . . , ri} of ri consecutive and non-overlapping discount intervals [lri , u
r
i ]

is defined, where lri and uri are the minimum and maximum number of product units to be purchased

from i to be in interval r. A discount rate δri is also associated with each interval r ∈ Ri such that

δr+1
i ≥ δri , r = 1, . . . , ri − 1. The authors generalize the classical MILP formulation for the R-TPP

to include the TQD policy modeling and propose a branch-and-cut approach exploiting classical TPP

valid inequalities as well as ad-hoc cuts and matheuristic strategies for the TQD subproblem (see

Manerba and Mansini, 2012b, 2014). They solve instances with up to 100 suppliers, 500 products,

and 5 discounts intervals per supplier using a Intel Core Duo 2GHz computer, with 2GB RAM.

7.2. Variants incorporating data uncertainty

In real problems, purchasing prices and product quantities might not be exactly known when the

purchaser has to select suppliers and design the corresponding optimal tour. The presence of uncertain

data forces to define when information becomes available and for which amount. This section describes

the alternative approaches proposed to tackle this issue in the TPP literature.

7.2.1. Stochastic TPP

Kang and Ouyang (2011) analyze a stochastic variant of the U-TPP, where product prices are

random variables following known independent (but not necessarily identical) probability distributions.

In their setting, the purchaser will know the offered price (a realization from the distribution) after

arriving at a supplier, and can decide whether to buy the product at the offered price, or reject it and
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visit another supplier (but it is not allowed to revisit any already visited supplier). The purchaser needs

to determine the optimal routing and purchasing strategies that minimize the expected total costs.

The author also assume that each supplier offers exactly one product and that origin and destination

locations are different. They propose an exact solution algorithm based on dynamic programming

with a time and space complexity equivalent to the ones for the traditional TSP from which the

method is derived. They also propose an approximate problem of lower complexity whose solution

yields bounds for the minimum total expected cost, and a greedy heuristic for fast solutions to large-

scale problems, quite similar to a nearest neighbor algorithm using expected prices. Instances are

constructed considering origin, destination and 348 supplier locations randomly selected from nodes

in the Chicago metropolitan transportation network. The numerical results show that the heuristic

algorithm yields near-optimum strategies and the approximate problem provides very good estimates

of the minimum total cost.

Beraldi et al. (2016) study a R-TPP in which both product quantities and prices are uncertain. and

propose a two-stage Stochastic Programming formulation where the first stage deals with the selection

of suppliers and the minimal cost route to visit them (tactical decisions), whereas recourse decisions in

the second stage are related to the products and the quantities to purchase at each supplier. To solve

the deterministic equivalent problem, the authors develop a branch-and-cut method, incorporating

the separation of some cuts, and the three Beam Search variants described in Section 6.1.2. Extensive

computational results show that the exact method is efficient finding the optimal solution for instances

with up to 75 suppliers, 50 products and 200 scenarios in less than 2 hours.

7.2.2. Dynamic TPP

Angelelli et al. (2009) introduce the first attempt to deal with a dynamic variant of the R-TPP,

where relevant information is not completely known in advance, but revealed as time goes on. In real

procurement problems, quantities available at the suppliers are time-dependent usually decreasing over

time (stocks are folded each morning and reduce over the day). The authors assume to operate in a

scenario where the decision maker exactly knows the current state of the product stocks. As soon as the

quantity available for a given product reduces, the purchaser is informed on the amount of reduction

and at which supplier it has occurred. However, he does not have any knowledge about future events.

This gives rise to the need of algorithms able to take decisions rapidly on the basis of the dynamically

changing information. The study aims at analyzing effectiveness of heuristics constructing solutions

step by step through greedy criteria that determine the next supplier to visit and the quantities to buy

there. The resulting heuristics are divided into 4 incremental levels. In any given level, decisions take

into account additional information from the previous levels, thus the last level is supposed to tackle

the problem in a less myopic way. First level heuristics associate with each product a priority value

and select the next supplier according to the one with the highest priority (product-driven criteria).

Second level heuristics choose the next supplier by looking more widely at all the products offered

(market-driven criteria). In third level, some products are purchased in advance in sight of possible

future scarcity (consumption-driven criteria). Finally, fourth level heuristics select the next supplier

considering the trade-off between traveling and purchasing costs (trade-off-driven criteria). Globally
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the authors propose 18 heuristics, 9 in the first, 5 in the second, 3 in the third, and 1 in the last level.

Methods are tested on a set of problems generated by modifying a |M | = 50, |K| = 50 deterministic

instance of Class 4 (see Section 8) and in which quantities reduce in all the suppliers according to a

Poisson distribution (different values of consumption rate are considered). Since heuristics may fail

in finding a feasible solution, they are also compared in terms of total product units not purchased

at the end of the tour. Results show that myopic approaches are reasonable only under limited

dynamism, while in more dynamic contexts the use of some future prediction may avoid to incur in

highly infeasible solutions and also improve costs performance.

Afterwards, in Angelelli et al. (2011), the same authors propose new methods considering some

evaluation of future events (look-ahead heuristics) and compare the 4 best algorithms described in their

previous work. The new heuristics build, execute, and eventually revise a long-term plan establishing

where to go and what to buy in visited suppliers. Moreover, once obtained a feasible solution, a VNS-

based improvement procedure is applied. Also look-ahead heuristics are divided into 3 incremental

levels, differing for the way the solution is updated: 1) in BasePlan, the plan is built on the initial state

of the world, and no information updates are taken into account; 2) in ReviseOrders, the suppliers to

visit are decided once, but the list of products to buy is revised whenever necessary, in order to deal

with scarceness; 3) in DynamicPlan, the whole plan is rebuilt when any change in the offer occurs.

The authors use an experimental setting similar to Angelelli et al. (2009), generating several different

sequences of consumption events. They show that look-ahead heuristics exhibit a more proactive

behavior better contrasting product scarceness although they are not always able to get feasibility.

Recently, Angelelli et al. (2015) introduce a time-dependent R-TPP variant, where product quan-

tities decrease over time at a constant rate, the replenishment of the product stocks for each supplier

occurs early in the morning (before the purchasing tour starts), and product prices do not vary during

the day. The problem is analyzed on a single-day horizon. The authors propose a natural MILP

formulation for the problem and provide some valid inequalities and parameters reformulation to

strengthen it. New branching strategies, embedded in a branch-and-cut framework, are introduced to

solve the problem at optimality. The authors test their method on 11 TSPLIB symmetric instances

with up to 42 node and duly modified to include up to 10 products. Quantities decrease according

to different consumption rates. Results show how the proposed approach outperforms plain CPLEX

when directly used to solve the models. As expected, complexity is strongly correlated to dynamism,

and for instances where feasible solutions exist, quick products depletion implies higher computational

time to find optimal solutions.

7.2.3. Dynamic and stochastic TPP

Angelelli et al. (2016) study a R-TPP including both dynamic and stochastic features. Due to the

presence of other purchasers, product availabilities decrease over time according to Markov processes,

independent with respect to products and suppliers. Purchasing can only be done on-site and the

purchaser organizes his visit to a set of suppliers in order to maximize the probability to satisfy products

demand and minimize expected total cost. Information about consumption events is made available at

runtime, allowing for plan reorganization. The authors assume the presence of an executor (the driver)
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collecting information at visited suppliers and of a planner having the computing power to reformulate

plans. Different operating scenarios occur depending on communication technology at hand that, in

turn, influences the level of information available to the planner. In scenario S1 no communication

equipment is available, thus an a-priori plan is produced. On the contrary, if communication is active,

in scenario S2 a complete local information on supplier inventory is revealed at visit time, whereas

scenario S3 considers a complete global information, where the planner is continuously informed on

stock levels in all markets. The problem models different application domains, from daily procurement

of perishable foods to the hand out of vaccines in the spread of viral diseases.

The multi-objective nature of the problem is faced through a hierarchical evaluation of the objec-

tives concerning unsatisfied demands and costs. Policies should first guarantee that the probability to

miss some items cannot be larger than a fixed threshold, then the expected number of missing items

and in sequence the expected overall costs should be minimized. The authors introduce 3 heuristic vari-

ants exploiting new information when it becomes available: the stochastic planner takes consumption

processes into account, the deterministic planner cuts down the computation burden of the stochastic

one by approximating the consumption processes with deterministic functions of time, and the hybrid

planner combine the two previous ones by proposing a compromise between CPU time and quality

of the results. In order to have a comparison, an off-line planner and a multi-scenario approach are

also implemented (under scenario S3 ) and tested on randomly generated instances with up to 100

suppliers and 10 products (available at http://or-brescia.unibs.it) with different realizations of

consumption processes. Results show that the hybrid planner does not work well when the decisions

have to be taken in a long run and no re-optimization is available as in S1, where the stochastic

planner is the winning approach. In richer information scenarios the approximation of hybrid planner

becomes less critical and it highly improves its performance. In particular, in S3 the hybrid planner

comes out to be the best approach from all points of view (feasibility, cost errors, and missing items).

7.3. Multi-vehicle TPP variants

As for other routing problems, also the TPP has been generalized to model applications in which

several vehicles are involved. Different types of constraints (bounds on vehicle capacity and/or on

distance traveled, incompatibilities among products carried) may force, in real contexts, the use of a

fleet of vehicles instead of a single one. In the multi-vehicle TPP (MVTPP), sometimes called multiple

TPP, a set F of homogeneous vehicles is available at the depot as a set of purchasers that collaborate

to satisfy the products demand. Unless otherwise indicated, these vehicles have a limited capacity Q.

The MVTPP aims at minimizing the overall purchasing and traveling costs deciding, for each vehicle

v ∈ F , the purchasing plan and the corresponding visiting cycle.

Notwithstanding its relevance, the first multi-vehicle generalization of the TPP has been intro-

duced only quite recently in Choi and Lee (2010b) where the authors propose and test MTZ-based

formulations for both the restricted and the unrestricted MVTPP. Later on, in Choi and Lee (2011),

the same authors use similar MVTPP formulations to solve the components purchasing of a complex

system with the objective of maximizing the overall reliability. Actually, the system’s reliability is

expressed as a non-linear objective function and the overall costs (also involving a fixed cost for each
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vehicle used) are included in the model as a budget constraint. No ad hoc solving procedure is pro-

posed and a MIP solver is simply used to tackle a problem formulation in which the objective function

is duly linearized. Due to the huge complexity of the MVTPP, the largest instance solved in a reason-

able time involves 40 suppliers, 40 components and 4 vehicles. However, this paper has the merit to

have gathered the attention of researchers on the MVTPP. Table 1 summarizes the characteristics of

the MVTPP variants in all the papers published in the 5 years following that initial work. Note that

all the single-vehicle TPP classifications exposed in Section 2.1 also apply for the multi-vehicle variant

(columns Routing costs and Demand). In addition, the MVTPP can be further classified depending

on the number of vehicle available in the fleet (Fleet size), that can be limited (an input data) or not,

and on the possibility or not to visit each supplier more than once by different vehicles (Multi-visit).

Routing costs Demand Multi-visit Fleet size

Riera-Ledesma and Salazar-González (2012) Asym. Unitary Not all. Unlim.
Riera-Ledesma and Salazar-González (2013) Asym. Unitary Not all. Unlim.
Bianchessi et al. (2014) Asym. Not unit. Not all. Limited
Manerba and Mansini (2015) Asym. Not unit. Allowed Limited
Gendreau et al. (2016) Asym. Unitary Allowed Limited
Shameli-Sendi et al. (2015) Asym. Not unit. Allowed Limited
Manerba and Mansini (2016) Asym. Not unit. Allowed Limited

Table 1: MVTPP features in the surveyed works

7.3.1. MVTPP as a location-routing problem

Riera-Ledesma and Salazar-González (2012) use the MVTPP to model a school bus service where

suppliers correspond to bus stops and products to students to pick-up. Since each student represents

a singleton, the unrestricted MVTPP with unitary-demand is considered. Moreover, it is not allowed

to visit the same stop with more than one bus. The problem objective is to minimize the traveling

costs represented by the distances traveled by buses to complete their tours and by students to reach

the stops from their own homes. Note that, while constructing the best routes for the buses to carry

the students to school, the problem simultaneously chooses the best stops for the students to reach,

thus yielding insights for locating the stops at a more tactical level.

The authors present a branch-and-cut approach based on a two-index single-CF formulation (see

Section 3.1.1) and the effective separation of several families of cuts inherited or inspired by the

ones proposed for VRP, single-vehicle TPP, and price collecting TSP. In particular, exact separation

procedures are developed for the Generalized Multistar, the Fractional Capacity (and some of their

strengthened versions), and the zSEC inequalities, whereas heuristic methods are used to separate

some other constraints (like the lifted cycle D+
k and D−k inequalities for which no polynomial-time

algorithm for their exact separation is known). An initial solution for the branch-and-cut is generated

by greedily finding a feasible assignment of the students to the bus stops and completing the solution

by using a well-known heuristic for the VRP (Clarke and Wright, 1964). Finally, a primal heuristic

is called after each branch-and-cut iteration in order to possibly obtain a feasible integer solution

from a fractional one. The method consists of two phases. The first one is a constructive phase that

tries to obtain feasible cycles by considering arcs in non-increasing order of the value of the relative

variables x∗a in the current fractional solution, and a feasible assignment according to the z∗ik values.
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The second one is an improvement phase based on cycle reduction, cycle user interchange, and cycle

merging moves. The proposed exact algorithm has been able to solve, in a reasonable amount of time,

symmetric as well as asymmetric instances with up to 125 potential bus stops, 125 users and 6 buses.

7.3.2. MVTPP with additional resource constraints

Riera-Ledesma and Salazar-González (2012) do not consider any further realistic restriction apart

from the capacity of the vehicles, i.e. the number of students that can be picked-up. Hence, the

same authors (Riera-Ledesma and Salazar-González, 2013) extend the school bus routing problem by

including different resource constraints significant for their application such as: a) upper bounds on

the length of each route; b) upper bounds on the total time that student can travel; c) upper bounds

on the number of stops that can be visited by each route; and d) lower bounds on the number of

students that have to be picked-up by the bus. The resulting variants appear suitable to be modeled

by a set-partitioning formulation in which variables correspond to all the possible feasible cycles, and,

consequently, to be efficiently solved by column generation (in general, intra-route resource constraints

allow the pricing problem to discard a large number of infeasible columns, speeding up its solution).

The procedure is embedded into a branch-and-bound framework to ensure integrality, and some cuts

are added to strengthen the LP relaxation at each node, yielding a branch-and-price-and-cut approach.

Although consolidated column generation procedures exist in the literature for multi-vehicle routing

problem, their adaptation to the MVTPP is not straightforward and deserves a brief explanation. Let

R be the set of all feasible routes, θr a variable equal to 1 if route r belong to the solution, and δrik

a coefficient equal to 1 if product k is purchased from supplier i in the route r. Then, a basic set

partitioning reformulation for the MVTPP is as follows:

min
∑
r∈R

 ∑
(i,j)∈r

cij +
∑
k∈K

∑
i∈Mk

fikδ
r
ik

 θr (19)

subject to
∑
i∈Mk

∑
r∈R

δrikθ
r = 1 k ∈ K (20)

θr ∈ {0, 1} r ∈ R (21)

Here, differently from common VRPs, a feasible route is not only a set of arcs representing a tour

(starting and ending to the depot 0) and visiting a subset of suppliers, but also a tour that guarantees

the accomplishment of a feasible purchasing plan, i.e. the set of decisions about which product to

purchase from which supplier belonging to the route, ensuring that a) a product cannot be purchased

where it is not available, and b) the total number of products purchased does not exceed the vehicle

capacity. That said, a feasible solution for the MVTPP can be viewed as a collection of O(|F |) routes

in R such that the demand for each product is satisfied and each supplier is visited by only one route.

This decomposition moves large part of the complexity of the resolution to the pricing problem, that

basically results to be a single-vehicle TPP in which the product demand is not defined. In order to

take advantage of the well-known labeling-based solution algorithms existing in the literature (see, e.g.,

Feillet et al., 2004), the pricing problem can be redefined as an Elementary Shortest Path Problem with
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Resource Constraints (ESPPRC) on an expanded graph in which nodes correspond to all the potential

assignment of a product k ∈ K to a supplier i ∈ Mk and the (reduced) cost of each arc depends on

both the traveling costs and the purchasing ones. In particular, Riera-Ledesma and Salazar-González

(2013) adapt to the MVTPP the q-route pseudo-polynomial algorithm proposed by Christofides et al.

(1981) for the CVRP. Eventually, they present a wide computational experience by testing several

combinations of the considered resource constraints on instances with up to 125 users and bus stops.

Another branch-and-price approach is proposed by Bianchessi et al. (2014) for a variant of the

restricted MVTPP in which the maximum length of each route is bounded. The product demand is

non-unitary and the vehicles capacity is unlimited. This would impact dramatically on the size of a

set R defined as above and, thus, on the complexity of the pricing problem (it would actually become

a restricted TPP without demand and capacity constraints). The authors decompose the problem

in a more traditional way, by considering a route as a simple resource constrained tour through the

suppliers and by dealing with the TPP purchasing part in the master problem’s constraints. Through

the use of accelerating techniques, a restricted master heuristic and other common improvements, the

method is able to optimally solve instances with up to |M | = 100, |K| = 200 and |F | = 8. The

authors also propose, for the first time, an empirical comparison between the solution of different (but

equivalent) MVTPP compact formulations by using a MIP solver.

7.3.3. MVTPP with additional pairwise incompatibility constraints

Recently, Manerba and Mansini (2015) introduce a MVTPP variant involving the presence of

incompatibilities among product types. Since pairwise incompatibility constraints (PIC) are used to

model the impossibility of loading incompatible products on the same vehicle, the problem is named

MVTPP-PIC. PICs, sometimes called Exclusionary Side-Constraints (see, e.g., Sun, 1998, 2002 for

their application to the classical Transportation Problem), simply use binary variables indexed by

vehicle and by product and duly coupled with z-variables, stating that, for each vehicle, the sum

of the variables relative to two incompatible products does not exceed 1. The problem results very

interesting for several reasons. First, incompatible products can be found in different real procurement

contexts, e.g. foods should not be mixed with chemicals, some dangerous substances may react or

become unstable if exposed to other ones, and so on. Second, this is the first MVTPP variant in which

multiple visit to the same supplier by different vehicles is allowed. Note that, differently from common

VRPs where split delivery allows savings in the traveling costs, here the multiple visit may be forced

by the incompatibilities and thus may cause a traveling cost increase. Finally, while in general the

use of more than one vehicle highly increases the difficulty of a routing problem, here the complexity

strongly depends also on the number of products and on the incompatibility relations among them.

In the specialized literature, the incompatibility issue is generally tackled through the use of

dedicated vehicles or the introduction of separating devices on the vehicles (Iori and Martello, 2010).

Manerba and Mansini (2015) have been the first who directly apply PICs to a vehicle routing problem.

The authors propose a branch-and-cut framework based on the dynamic separation of several families

of valid inequalities. Some of them are generalizations of known cuts for the single-vehicle TPP

and other are proposed for the specific problem. The method also incorporates symmetry breaking
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constraints in order to reduce the branch-and-cut tree and a four-step heuristic able to find a good

initial integer solution. The heuristic adds to a Beam Search framework, similar to that presented in

Section 6.1.2, a forth layer representing the vehicle scheduling subproblem of assigning product types

and suppliers to vehicles. For this specific subproblem, the authors propose three greedy procedure (in

which the assignment is done supplier by supplier, with or without privileging incompatible products,

and product by product, respectively) and a recovery procedure based on the exact solution of a

MIP model. The complete branch-and-cut has been able to efficiently solve instances with up to 50

suppliers, 100 products and 16 vehicles.

In the just described work, the product demand is non-unitary and the suppliers availabilities are

restricted. Gendreau et al. (2016) study instead the unitary-demand MVTPP-PIC. This special case

is interesting because it models some complex problems such as the daily scheduling of a set K of

surgeries that can be accomplished by a set M of medical teams in a set F of multi-purpose operating

rooms. In this case, the costs fik and cij represent the time needed to complete a surgery and to prepare

specific tools and equipment for a specific team, respectively. The objective is to minimize the overall

time to accomplish the required surgeries. Incompatibilities among different surgeries may arise when

there exists a too high risk of reciprocal contamination for the patients and the time for correctly

sterilize the room would be prohibitive. The authors propose a branch-and-price solution method

based on a problem decomposition similar to that proposed in Riera-Ledesma and Salazar-González

(2013). In particular, the incompatibility issue is tackled in the pricing problem as an additional

intra-route constraint. The pricing problem is solved by an innovative hybrid strategy combining two

different exact methods, i.e. a labeling algorithm over a duly expanded graph (considering also the

product incompatibilities) and a tailored branch-and-cut directly applied to the MILP formulation of

the pricing problem. The two approaches, presenting different and somehow complementary features,

result effectively combinable in several ways. Another notable characteristic of the proposed algorithm

is the branching phase, for which the authors propose a hierarchical scheme composed by three different

rules: a) branching on the number of times a supplier is visited, b) branching on the number of times an

arc is traversed, and c) branching on a subset of θ variables generating a fractional vehicle flow. Note

that this last rule results necessary in order to ensure the integrality of the solution in a vehicle routing

problem allowing multiple visits to the same supplier. The overall branch-and-price implementations

outperforms the branch-and-cut method existing for the general MVTPP-PIC, strictly improving

solutions for 8 benchmark instances and optimally solve all the others within an average CPU time

that is an order of magnitude lower than the competitor’s one. Other extensive experiments show

the efficiency of the method over a new set of hard-to-solve instances with up to 70 products, 70% of

cross-incompatibilities among them, and 50 suppliers.

For the sake of completeness, we also cite the very recent work by Manerba and Mansini (2016)

in which the author present a MVTPP-like formulation for a Nurse Routing Problem (NRP). Here, a

set of nurses (vehicles) has to visit a subset of patients (suppliers) in order to perform different type

of services (products) with different priority and importance, maximizing the overall profit associated

to the care service. This routing/scheduling problem is further complicated by considering a) a daily
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limit on the time needed by each single nurse to reach the patients and to perform the services, and

b) the impossibility to perform two incompatible services to a certain patient in the same day. Note

that, even if these incompatibilities can be modeled as PICs, the restriction is no longer an intra-route

constraint for each vehicle but holds for each patient.

7.3.4. Independent MVTPP with order

Very recently, Shameli-Sendi et al. (2015) propose the most eclectic MVTPP variant in the context

of enterprise networks, where virtual security appliances are chained in specific order to perform

different filtering functions on the traffic. To fully model their problem, the authors extend the basic

MVTPP in two ways: a) instead of multiple purchasers cooperating to satisfy a common products list,

there are many independent purchasers, each one having a source node to start from, a destination node

to end in, and a particular list of products to be purchased; b) a sequential order for purchasing the

products is also specified to each purchaser. The resulting problem aims at minimizing the processing

time needed by security functions, which is composed by the time required by the traffic to traverse

the links and the time required by the traffic to be analyzed by the security appliances in the nodes.

The experimental setup basically consists in solving a path-based MIP model through a solver and

integrating the solution in a cloud computing platform to show the feasibility of the approach.

8. Instances

In this section, we survey the main classes of instances proposed in the literature for the basic

TPP. We analyze the main characteristics of each class by putting the attention on maximum size of

solved instances and indicating which ones (if any) have not been solved to optimality yet.

The first interesting benchmark set has been proposed in Singh and van Oudheusden (1997) for

both U-ATPP and U-STPP. In the asymmetric instances, travel costs are integers randomly generated

from a uniform distribution in [15, 30]. Product prices are also integer values fixed to a big-M constant

in about the 50% of the cases, whereas the remaining ones range in [a, a + 10] (a is a non-specified

integer value). A total of 65 instances (5 of each size) with |M | = {10, 15, 20, 25} and |K| ranging from

10 to 100 are generated and solved. In symmetric instances, traveling costs come from the 33-city TSP

example described in Karg and Thompson (1964). Product prices are integers randomly generated

in [0, 500]. A total of 40 instances with 10 to 20 suppliers, and 15 to 50 products are created. All

instances have been solved to optimality, however symmetric ones require higher computing effort.

Almost in the same years, other authors propose benchmarks to test their methods. Ochi et al.

(1997) generate a set of 80 instances divided in four classes with the following characteristics: a) both

|M | and |K| range in [20, 50]; b) |M | ranges in [20, 50], |K| in [100, 500]; c) |M | ranges in [100, 500],

|K| in [20, 50]; d) both |M | and |K| range in [100, 200]. Unfortunately, these instances are unusable

since there are no indications on how distances and products prices have been generated and also no

details on the solutions obtained on single instances. Pearn and Chien (1998) generate 30 random

instances where |M | ranges in [10, 50], |K| in [5, 60], the traveling costs in [1, x] with 15 ≤ x ≤ 140,

and the purchasing costs in [0, y] with 5 ≤ y ≤ 75. Some graphs are dense, others are sparse. Their

32



implementation of the exact method by Ramesh (1981) finds the optimal solution in all the cases.

Ochi et al. (2001) generate 36 U-TPP instances to test their sequential algorithms. Both |M | and

|K| range in [50, 150], whereas the number of products per supplier is between 1 to 5. Traveling and

purchasing costs are generated randomly in [10, 300]. Five additional instances with |M | and |K|
randomly ranging in [100, 500], traveling and purchasing costs in [10, 500], and up to 100 products for

supplier are also provided. No optimal solutions are reported for the instances.

Laporte et al. (2003) consider 4 classes of test instances for the STPP. Class 1 contains the

33-supplier U-STPP instances defined in Singh and van Oudheusden (1997), for each of which are

generated 5 samples for each number of products |K| = {50, 100, 150, 200, 250}. Distances do not

satisfy the triangle inequality. Product prices are generated in [0, 500] according to a discrete uniform

distribution. Class 2 contains 140 instances for the U-TPP (5 samples for each combination of

|V | = {50, 100, 150, 200, 250, 300, 350} and |K| = {50, 100, 150, 200}) randomly generated by using

the process described in Pearn and Chien (1998), apart from the routing costs that are symmetric

instead of asymmetric. Class 3 contains instances for the U-TPP defined as for Class 1 but |V | integer

coordinate vertices are generated in the [0, 1000]× [0, 1000] square according to a uniform distribution

and routing costs as truncated Euclidean distances. Moreover, each product k is associated with |Mk|
randomly selected suppliers, where |Mk| is uniformly generated in [1, |V |−1]. Class 4 contains R-TPP

instances generated as in Class 3, adding a limit qik on offered quantities randomly generated in the

interval [1, 15] and dk = dλmaxi∈Mk
qik + (1 − λ)

∑
i∈Mk

qike, where 0 < λ < 1 has been set equal to

0.5, 0.7, 0.9, and 0.99. Instances are available at http://webpages.ull.es/users/jriera/TPP.htm.

All Class 1 instances have been solved to optimality with the branch-and-cut approach proposed

by Laporte et al. (2003). Similarly for Class 2 but for two instances with (|V |, |K|) = (300, 50) and

(300, 150), respectively. In Class 3, only 89 out of 140 instances have been solved to optimality.

Euclidean travel costs seem to produce much harder instances to solve. The open instances are 51,

the 40 largest ones with |V | = {300, 350} plus other 11 instances, one instance with (|V |, |K|) =

(150, 200), one with (200, 200), three with (250, 100), two with (250, 150) and four with (250, 200),

respectively. The best-known solution value has been provided for 3 instances (EEuclideo.300.200.1,

EEuclideo.300.200.5, and EEuclideo.350.200.4 ) by the local search algorithm of Riera-Ledesma and

Salazar-González (2005a) and for all the remaining ones by the ACO approach of Bontoux and Feillet

(2008) or by the TA approach of Goldbarg et al. (2009). All Class 4 open instances up to (|V |, |K|) =

(200, 100) are summarized in Table 2. Larger instances have not been solved yet.

(|V |, |K|) λ = 0.5 λ = 0.7 λ = 0.8 λ = 0.9 λ = 0.95 λ = 0.99
(100, 150) 4
(100, 200) 1
(150, 50) 1 1
(150, 100) 1 4 1
(150, 150) 1 5 1
(150, 200) 5 1
(200, 50) 1 1 4 1
(200, 100) 1 3 4 3
total 1 1 1 5 28 8

Table 2: Class 4 instances not solved to optimality yet.
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Finally, if we do not consider the fixed costs, the 192 instances introduced by Voß (1996) are U-

TPP instances not solved to optimality yet. They are based on 3 graphs known from the literature for

various routing problems with 10, 31, and 52 nodes. For each graph, |K| is varied 8 times depending

on |M |, with no more than 83 products for largest instances. The availability of each product at each

supplier is decided according to a probability value (0.25, 0.4, 0.6, and 0.75, respectively). The price of

a non-available product is set to a prohibitively high value, otherwise is uniformly chosen in [0, 1000]

in a first cost structure, or in [0, 100] in a second one.

9. Conclusions and future research

The TPP is a procurement/routing problem that aims at selecting the purchasing plan of a set of

products from a subset of suppliers, and the corresponding visiting tour, in order to satisfy a predefined

products demand. The objective is to minimize the overall purchasing and traveling costs. Interesting

for its wide applicability, the TPP is one of the most studied generalization of the TSP. Many papers

have been written on this problem since its introduction in the optimization literature about 50 years

ago, and it still attracts the attention of researchers and practitioners (more than 20 papers have

appeared since the 2010). A main goal of this survey is to gather for the first time all the TPP works

together and to create a comprehensive starting point for anyone will approach the problem or some

of its variants in the future. Just a bunch of papers have been impossible to analyze, because of

their scarce availability (the technical report by Voß, 2014) or because they are published on national

journals not in English language (Choi and Lee, 2009, 2010a,c). However, we do not propose just

a references sink. All the contributions have been critically reviewed, taxonomies and classifications

have been standardized, and transversal comparisons have been conducted whenever possible.

It is clear that the basic TPP, in its symmetric/asymmetric or restricted/unrestricted versions,

has been exhaustively analyzed by different authors and under different perspectives. A wide variety

of solution methods, some of which very efficient, have been proposed to achieve optimal or near-

optimal solutions. Although the computational classification of the problem predicts poor results

when the purpose is to guarantee the optimality, a certain number of authors has proposed exact

algorithms (dynamic programming, branch-and-bound, branch-and-cut) to solve it. However, given

the hardness of the problem and its complicate combinatorial structure, heuristic approaches represent

not surprisingly the major part of existing solution methods. Several constructive and local search

procedures have been presented, whereas contributions on metaheuristic are quite limited in number

but, actually, explore the most part of the main known frameworks. The importance of having even

a simple heuristic algorithm in place is confirmed by the fact that the quasi-totality of the existing

exact methods for the TPP also include some heuristic components. In turn, mathematical/structural

properties extracted to obtain exact methods have led, very often, to the basic ideas on which heuristic

algorithms have been developed in later works. We believe that both exact and heuristic approaches

have their own relevance, and complement one each other in the process of enriching the knowledge

on the problem and its tractability.

It is clear as well that the attention of the researchers has moved, in the last years, to study
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interesting TPP variants able to model more realistic problems. In particular, the most recent papers

focus on stochastic and multi-vehicle TPP, and on other variants involving more or less complicating

side-constraints (budget restrictions, discount policies to consider for the purchasing plan, pick-up

and delivery requests to manage, intra-route constraints, and so on). We strongly believe that future

works will keep going in this direction. As a suggestion, we remark that no existing TPP contributions

consider uncertainty on the traveling costs, in contrast to the most literature on stochastic routing

problems. Again, by interpreting the supplier selection part of the TPP as a tactical decision-making

issue, an explicit multi-period variant of the problem may be of interest in organizing medium-term

procurement logistics operations or in considering periodic visit to the suppliers.

Despite of the natural growing interest on more and more innovative and useful TPP variants, we

believe that some work can still be done regarding the basic problem. Surely, the current literature

lacks in some aspects:

• benchmarking : no systematic works exist on defining the generation process, the representing

format, the dimension and the complexity of benchmark TPP instances. A contribution in this

sense, following recent guidelines on the subject (Kendall et al., 2015), would be of great utility;

• web-page: in order to simplify the performance evaluation of upcoming solution methods, a

maintained web-page should be of reference for the research community working on the problem,

gathering and making available up-to-date best results for closed and non-closed instances;

• libraries: as for other well-known routing problems, open-source code libraries implementing

the most used constructive heuristics as well as separation procedures for the most efficient cuts

would be highly appreciated and foster the creation of more efficient TPP solution methods.
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problem with multiple stacks and deliveries: A branch-and-cut approach. Comput. Oper. Res. 40 (8),

2103–2115.

Bellmore, M., Nemhauser, G. L., 1968. The Traveling Salesman Problem: A Survey. Oper. Res. 16,

538–558.

Beraldi, P., Bruni, M. E., Manerba, D., Mansini, R., 2016. A stochastic programming approach for

the traveling purchaser problem. IMA Journal of Management Mathematics.

Bianchessi, N., Mansini, R., Speranza, M., 2014. The distance constrained multiple vehicle traveling

purchaser problem. Eur. J. Oper. Res. 235 (1), 73–87.

Boctor, F. F., Laporte, G., Renaud, J., 2003. Heuristics for the traveling purchaser problem. Comput.

Oper. Res. 30 (4), 491–504.

Bontoux, B., Feillet, D., 2008. Ant colony optimization for the traveling purchaser problem. Comput.

Oper. Res. 35 (2), 628–637.

Burstall, R. M., 1966. A Heuristic Method for a Job-Scheduling Problem. Oper. Res. Quart. 17 (3),

291–304.

Buzacott, J. A., Dutta, S. K., 1971. Sequencing many jobs on a multi-purpose facility. Naval Res.

Logist. Quart. 18 (1), 75–82.

Cambazard, H., Penz, B., 2012. A constraint programming approach for the traveling purchaser

problem. In: Milano, M. (Ed.), Principles and Practice of Constraint Programming. Lecture Notes

in Computer Science. Springer Berlin Heidelberg, pp. 735–749.

Cattrysse, D., Beullens, P., Collin, P., Duflou, J., Oudheusden, D., 2006. Automatic production

planning of press brakes for sheet metal bending. Int. J. Prod. Res. 44 (20), 4311–4327.

Choi, M. J., Lee, S. H., 2009. Periodic heterogeneous multiple traveling purchaser problem for refuse

logistics optimization. J. of the Korean Society of Supply Chain Management 9 (2), 147–154.

Choi, M. J., Lee, S. H., 2010a. Heterogenious multiple traveling purchaser problem with budget

constraint. J. of the Korean Operations Research and Management Science Society 35 (1), 111–124.

Choi, M.-J., Lee, S.-H., July 2010b. The multiple traveling purchaser problem. In: 40th International

Conference on Computers and Industrial Engineering (CIE), 2010. pp. 1–5.

Choi, M. J., Lee, S. H., 2010c. Uncapacitated multiple traveling purchaser problem. Journal of the

Korean Institute of Industrial Engineers 36 (2), 78–86.

Choi, M.-J., Lee, S.-H., 2011. The multiple traveling purchaser problem for maximizing system’s

reliability with budget constraints. Expert Systems with Applications 38 (8), 9848–9853.

36



Christofides, N., Mingozzi, A., Toth, P., 1981. Exact algorithms for the vehicle routing problem, based

on spanning tree and shortest path relaxations. Math. Prog. 20 (1), 255–282.

Clarke, G., Wright, J. W., 1964. Scheduling of vehicles from a central depot to a volume of delivery

points. Operations Research 12, 568–581.

Degraeve, Z., Labro, E., Roodhooft, F., 2000. An evaluation of vendor selection models from a total

cost of ownership prospective. Eur. J. Oper. Res. 125 (1), 35–48.

Edmonds, J., 1965. Maximum matching and a polyhedron with 0,1 vertices. J. Res. Nat. Bur. Stan-

dards 69B.

El-Dean, R. A.-H. Z., March 2008. A tabu search approach for solving the travelling purchase problem.

In: Proceedings of INFOS2008. Faculty of Computers & Information, Cairo University, pp. 24–30.

Feillet, D., Dejax, P., Gendreau, M., 2005. Traveling Salesman Problems with Profits. Transport. Sci.

39 (2), 188–205.

Feillet, D., Dejax, P., Gendreau, M., Gueguen, C., 2004. An exact algorithm for the elementary

shortest path problem with resource constraints: Application to some vehicle routing problems.

Netw. 44 (3), 216–229.

Fischetti, M., Salazar-Gonzalez, J.-J., Toth, P., 2007. The Generalized Traveling Salesman and Ori-

enteering Problems. In: Gutin, G., Punnen, A. (Eds.), The Traveling Salesman Problem and Its

Variations. Vol. 12 of Combinatorial Optimization. Springer US, pp. 609–662.

Gendreau, M., Hertz, A., Laporte, G., 1992. New insertion and postoptimization procedures for the

traveling salesman problem. Oper. Res.

Gendreau, M., Manerba, D., Mansini, R., 2016. The multi-vehicle traveling purchaser problem with

pairwise incompatibility constraints and unitary demands: A branch-and-price approach. Eur. J.

Oper. Res. 248 (1), 50–71.

Goerler, A., Schulte, F., Voß, S., 2013. An application of late acceptance hill-climbing to the traveling

purchaser problem. In: Pacino, D., Voß, S., Jensen, R. M. (Eds.), Computational Logistics. Vol.

8197 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 173–183.

Goldbarg, M. C., Bagi, L. B., Goldbarg, E. F. G., 2009. Transgenetic algorithm for the traveling

purchaser problem. Eur. J. Oper. Res. 199 (1), 36–45.

Goldberg, A., Tarjan, R., 1988. A new approach to the maximum-flow problem. J. ACM, 921–940.

Goldberg, A. V., Rao, S., Sep. 1998. Beyond the flow decomposition barrier. J. ACM 45 (5), 783–797.

Golden, B., Levy, L., Dahl, R., 1981. Two Generalizations of the Traveling Salesman Problem. Omega

9 (4), 439–441.

37



Gouveia, L., Paias, A., Voß, S., 2011. Models for a traveling purchaser problem with additional side-

constraints. Comput. Oper. Res. 38 (2), 550–558.

Grötschel, M., Padberg, M. W., 1985. Polyhedral theory. In: Lawler, E. L., Lenstra, J. K., Kan, A. H.

G. R., Shmoys, D. B. (Eds.), The Traveling Salesman Problem. A Guided Tour of Combinatorial

Optimization. Wyley, Ch. 8, pp. 251–305.

Gutin, G., Punnen, A. P. (Eds.), 2002. The traveling salesman problem and its variations. Combina-

torial optimization. Kluwer Academic, Dordrecht, London.

Helsgaun, K., 2000. An effective implementation of the Lin-Kernighan traveling salesman heuristic.

Eur. J. Oper. Res. 126 (1), 106–130.

Infante, D., Paletta, G., Vocaturo, F., Sep. 2009. A ship-truck intermodal transportation problem.

Maritime Economics & Logistics 11 (3), 247–259.

Iori, M., Martello, S., 2010. Routing problems with loading constraints. TOP 18 (1), 4–27.

Kang, S., Ouyang, Y., 2011. The traveling purchaser problem with stochastic prices: Exact and

approximate algorithms. Eur. J. Oper. Res. 209 (3), 265–272.

Karg, R. L., Thompson, G. L., 1964. A heuristic approach to solving travelling salesman problems.

Management Science 10 (2), pp. 225–248.

Kendall, G., Bai, R., Blazewicz, J., De Causmaecker, P., Gendreau, M., John, R., Li, J., McCollum,

B., Pesch, E., Qu, R., Sabar, N., Vanden Berghe, G., Yee, A., 2015. Good laboratory practice for

optimization research. J. Oper. Res. Soc., –.
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Riera-Ledesma, J., Salazar-González, J.-J., 2012. Solving school bus routing using the Multiple Vehicle

Traveling Purchaser Problem: a branch-and-cut approach. Comput. Oper. Res. 39 (1), 391–404.
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