Home Contact Admin

OR@DII - Operational Research at Department of Information Engineering

Simple Ideas Are Often The Best                                                                                                                                        University of Brescia


Operational Research Group
Dip. di Ingegneria dell'Informazione
via Branze, 38
(25123) Brescia

+39 030 371 5448
+39 030 371 5935

Since 2007, OR@DII is the Operational Reserch group working at the Department of Information Engineering (DII) of the University of Brescia. Its research activity is focused on the development of optimization models and algorithms. OR@DII is part of OR@BRESCIA, the interdepartmental Operational Research group of the University of Brescia.
Filter by type:       Filter by topic:      

To appear

R. Giusti, D. Manerba, R. Tadei. Multi-period Transshipment Location-Allocation Problem with Stochastic Synchronized Operations. Networks.


R. Tadei, G. Perboli, D. Manerba. The multi-stage dynamic stochastic decision process with unknown distribution of the random utilities. Optimization Letters 14, pp. 1207–1218. 2020.   >> Download

E. Fadda, L. F. Tiotsop, D. Manerba, R. Tadei. The stochastic multi-path traveling salesman problem with dependent random travel costs. Transportation Science 54 (5), pp. 1372-1387. 2020.  >> Download

Y. Li, S. Carabelli, E. Fadda, D. Manerba, R. Tadei, O. Terzo. Machine Learning and Optimization for Production Rescheduling in Industry 4.0. International Journal of Advanced Manufacturing Technology 110, 2445-2463. 2020.  >> Download


M. M. Baldi, D. Manerba, G. Perboli, R. Tadei. A generalized bin packing problem for parcel delivery in last-mile logistics. European Journal of Operational Research 274 (3). 990-999. 2019.  >> Download

R. Mansini, R. Zanotti. A Core-Based Exact Algorithm for the Multidimensional Multiple Choice Knapsack Problem. INFORMS Journal on Computing (to appear). 2019.

M. Roohnavazfar, D. Manerba, J. C. De Martin, R. Tadei. Optimal paths in multi-stage stochastic decision networks. Operations Research Perspectives 6: number 100124. 2019.  >> Download

E. Fadda, D. Manerba, G. Cabodi, P. Camurati, R. Tadei. KPIs for Optimal Location of charging stations for Electric Vehicles: the Biella case-study. In: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 18, pages 123-126. 2019.  >> Download


M. Pasetti, S. Rinaldi, D. Manerba. A Virtual Power Plant Architecture for the Demand-Side Management of Smart Prosumers. Applied Sciences 8 (3), 432. 2018.   >> Download

R. Tadei, G. Perboli, D. Manerba. A recent approach to derive the Multinomial Logit model for choice probability. In: P. Daniele and L. Scrimali (eds.), New Trends in Emerging Complex Real Life Problems, AIRO Springer Series, vol. 1, pp. 473-481. 2018.  >> Download


D. Manerba, R. Mansini, J. Riera-Ledesma. The Traveling Purchaser Problem and its Variants. European Journal of Operational Research 259 (1), pp. 1-18. 2017.  >> Download

D. Manerba, R. Mansini, G. Perboli. Supplier Selection under Uncertainty in the presence of Total Quantity Discounts. ODS2017. September 4-7, 2017. Sorrento, Italy

Filippi, C., Mansini, R., Stevanato, E. Mixed integer linear programming models for optimal crop selection. Computers and Operations Research 81, pp. 26-39  >> Download

Colombi, M., Corberán, Á., Mansini, R., Plana, I., Sanchis, J.M. The Hierarchical Mixed Rural Postman Problem: Polyhedral analysis and a branch-and-cut algorithm. European Journal of Operational Research 257(1), pp. 1-12  >> Download

Colombi, M., Mansini, R., Savelsbergh, M. The generalized independent set problem: Polyhedral analysis and solution approaches. European Journal of Operational Research 260(1), pp. 41-55. 2017.  >> Download


D. Manerba. Optimization models and algorithms for problems in Procurement Logistics. 4OR - A Quarterly Journal of Operations Research 13(3). pp. 339-340. 2015  >> Download


Mansini R., Speranza M.G. (2012). CORAL: An exact algorithm for the Multidimensional Knapsack Problem. INFORMS Journal on Computing (ISSN:1526-5528) Vol. 24, p. 399-415.

Angelelli E., Mansini R., Speranza M.G. (2012). Kernel Search: A new heuristic framework for portfolio selection. Computational Optimization and Applications (ISSN:0926-6003) Vol. 51, p. 345--361.


Angelelli E., Mansini R., Speranza M.G. (2010). Kernel Search: A general heuristic for the Multi-dimensional Knapsack Problem. Computers \& Operations Research (ISSN:0305-0548) Vol. 37, p. 2017--2026.


Mansini, R., Pferschy U. (2009). A Two-Period Portfolio Selection Model for Asset-backed Securitization. Algorithmic Operations Research (ISSN:1718-3235) Vol. 4(2), p. 155--170.


Mansini R., Pferschy U. (2004). Securitization of Financial Assets: Approximation in Theory and Practice. Computational Optimization and Applications (ISSN:0926-6003) Vol. 29, p. 147--171.

Mansini R., Speranza M.G., Tuza Z. (2004). Scheduling groups of tasks with precedence constraints on three dedicated processors. Discrete Applied Mathematics (ISSN:0166-218X) Vol. 134, p. 141-168.


Kellerer, H., Mansini R., Pferschy U., Speranza M.G. (2003). An efficient fully polynomial approximation scheme for the subset-sum problem. Journal of Computer and System Sciences (ISSN:0022-0000) Vol. 66(2), p. 349-370.


Mansini, R., Speranza M.G., (2002). Multidimensional Knapsack Model for the Selection of Contracts in an Asset-Backed Securitization. Journal of the Operational Research Society (ISSN:0160-5682) Vol. 53, p. 822-832.


Kellerer H., Mansini R. , Speranza M.G. (2000). Two Linear Approximation Algorithms for the Subset-Sum Problem. European Journal of Operational Research (ISSN:0377-2217) Vol. 120, p. 289--296.