Home Contact Admin

OR@DII - Operational Research at Department of Information Engineering

Simple Ideas Are Often The Best                                                                                                                                        University of Brescia



Contacts

Operational Research Group
Dip. di Ingegneria dell'Informazione
via Branze, 38
(25123) Brescia
Italy

Telephone:
+39 030 371 5448
+39 030 371 5935


Since 2007, OR@DII is the Operational Reserch group working at the Department of Information Engineering (DII) of the University of Brescia. Its research activity is focused on the development of optimization models and algorithms. OR@DII is part of OR@BRESCIA, the interdepartmental Operational Research group of the University of Brescia.
Filter by type:       Filter by topic:      

To appear

R. Giusti, D. Manerba, R. Tadei. Multi-period Transshipment Location-Allocation Problem with Flow Synchronization under Stochastic Handling Operations. Networks.  >> Download


2021

E. Fadda, D. Manerba, G. Cabodi, P. Camurati, R. Tadei. Comparative analysis of models and performance indicators for optimal service facility location. Transportation Research Part E: Logistics and Transportation Review 145, 102174. 2021.  >> Download


Fadda, E., Manerba, D., Cabodi, G., Camurati, P., Tadei, R. Evaluation of Optimal Charging Station Location for Electric Vehicles: An Italian Case-Study. In: S. Fidanova (Ed.), Recent Advances in Computational Optimization. Springer Studies in Computational Intelligence vol. 920, pp. 71–87. 2021.  >> Download


2020

E. Fadda, L. F. Tiotsop, D. Manerba, R. Tadei. The stochastic multi-path traveling salesman problem with dependent random travel costs. Transportation Science 54 (5), pp. 1372-1387. 2020.  >> Download


Y. Li, S. Carabelli, E. Fadda, D. Manerba, R. Tadei, O. Terzo. Machine Learning and Optimization for Production Rescheduling in Industry 4.0. International Journal of Advanced Manufacturing Technology 110, 2445-2463. 2020.  >> Download


R. Mansini, R. Zanotti. Optimizing the physician scheduling problem in a large hospital ward. Journal of Scheduling 23 (3), pp. 337–361. 2020.  >> Download


S. Hanafi, R. Mansini, R. Zanotti. The Multi-visit Team Orienteering Problem with Precedence Constraints. European Journal of Operational Research 282(2), pp. 515–529. 2020.  >> Download


R. Mansini, R. Zanotti. A Core-Based Exact Algorithm for the Multidimensional Multiple Choice Knapsack Problem. INFORMS Journal on Computing 32 (4), pp. 1061-1079. 2020.


Li, Y., Fadda, E., Manerba, D., Tadei, R., Terzo, O. Reinforcement Learning Algorithms for Online Single-Machine Scheduling. Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, FedCSIS 2020, pp. 277–283, 9222933. 2020.  >> Download


2019

D. Manerba, G. Perboli. New solution approaches for the capacitated supplier selection problem with total quantity discount and activation costs under demand uncertainty. Computers & Operations Research 101, pp. 29-42. 2019.  >> Download


M. M. Baldi, D. Manerba, G. Perboli, R. Tadei. A generalized bin packing problem for parcel delivery in last-mile logistics. European Journal of Operational Research 274 (3). 990-999. 2019.  >> Download


E. Fadda, D. Manerba, G. Cabodi, P. Camurati, R. Tadei. KPIs for Optimal Location of charging stations for Electric Vehicles: the Biella case-study. In: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 18, pages 123-126. 2019.  >> Download


T. Calogiuri, G. Ghiani, E. Guerriero, R. Mansini. A branch-and-bound algorithm for the time-Dependent rural postman problem. Computers and Operations Research 102, pp. 150-157. 2019.  >> Download


A. Gobbi, D. Manerba, R. Mansini, R. Zanotti. A Kernel Search for a patient satisfaction-oriented nurse routing problem with time-windows. IFAC-PapersOnLine 52(13), pp. 1669-1674. 2019.   >> Download


2018

D. Manerba, R. Mansini, G. Perboli. The Capacitated Supplier Selection Problem with Total Quantity Discount policy and Activation Costs under Uncertainty. International Journal of Production Economics 198, pp. 119-132. 2018.  >> Download


Bianchessi, N., Mansini, R., Speranza. A branch-and-cut algorithm for the Team Orienteering Problem. International Transactions in Operational Research 25(2), pp. 627-635. 2018.  >> Download


M. Pasetti, S. Rinaldi, D. Manerba. A Virtual Power Plant Architecture for the Demand-Side Management of Smart Prosumers. Applied Sciences 8 (3), 432. 2018.   >> Download


D. Manerba, R. Mansini, R. Zanotti. Attended Home Delivery: reducing last-mile environmental impact by changing customer habits. IFAC-PapersOnLine 51 (5), 55-60. 2018.  >> Download


2017

D. Manerba, R. Mansini, J. Riera-Ledesma. The Traveling Purchaser Problem and its Variants. European Journal of Operational Research 259 (1), pp. 1-18. 2017.  >> Download


Filippi, C., Mansini, R., Stevanato, E. Mixed integer linear programming models for optimal crop selection. Computers and Operations Research 81, pp. 26-39  >> Download


Colombi, M., Mansini, R., Savelsbergh, M. The generalized independent set problem: Polyhedral analysis and solution approaches. European Journal of Operational Research 260(1), pp. 41-55. 2017.  >> Download


M. Colombi, A. Corberan, R. Mansini, I. Plana, J.M. Sanchis. The hierarchical mixed rural postman problem. Transportation Science 51(2), pp. 755-770.  >> Download


Colombi, M., Corberan, A., Mansini, R., Plana, I., Sanchis, J.M. The directed profitable rural postman problem with incompatibility constraints. European Journal of Operational Research 261(2), pp. 549-562  >> Download


Colombi, M., Corberan, A., Mansini, R., Plana, I., Sanchis, J.M. The Hierarchical Mixed Rural Postman Problem: Polyhedral analysis and a branch-and-cut algorithm. European Journal of Operational Research 257(1), pp. 1-12  >> Download


2015

D. Manerba, R. Mansini. A branch-and-cut algorithm for the Multi-vehicle Traveling Purchaser Problem with Pairwise Incompatibility Constraints. Networks 65(2), pp. 139-154. 2015.   >> Download


D. Manerba. Optimization models and algorithms for problems in Procurement Logistics. 4OR - A Quarterly Journal of Operations Research 13(3). pp. 339-340. 2015  >> Download


2012

Mansini R., Speranza M.G. (2012). CORAL: An exact algorithm for the Multidimensional Knapsack Problem. INFORMS Journal on Computing (ISSN:1526-5528) Vol. 24, p. 399-415.


Angelelli E., Mansini R., Speranza M.G. (2012). Kernel Search: A new heuristic framework for portfolio selection. Computational Optimization and Applications (ISSN:0926-6003) Vol. 51, p. 345--361.


2010

Angelelli E., Mansini R., Speranza M.G. (2010). Kernel Search: A general heuristic for the Multi-dimensional Knapsack Problem. Computers \& Operations Research (ISSN:0305-0548) Vol. 37, p. 2017--2026.


2009

Mansini, R., Pferschy U. (2009). A Two-Period Portfolio Selection Model for Asset-backed Securitization. Algorithmic Operations Research (ISSN:1718-3235) Vol. 4(2), p. 155--170.


2004

Mansini R., Pferschy U. (2004). Securitization of Financial Assets: Approximation in Theory and Practice. Computational Optimization and Applications (ISSN:0926-6003) Vol. 29, p. 147--171.


Mansini R., Speranza M.G., Tuza Z. (2004). Scheduling groups of tasks with precedence constraints on three dedicated processors. Discrete Applied Mathematics (ISSN:0166-218X) Vol. 134, p. 141-168.


2003

Kellerer, H., Mansini R., Pferschy U., Speranza M.G. (2003). An efficient fully polynomial approximation scheme for the subset-sum problem. Journal of Computer and System Sciences (ISSN:0022-0000) Vol. 66(2), p. 349-370.


2002

Mansini, R., Speranza M.G., (2002). Multidimensional Knapsack Model for the Selection of Contracts in an Asset-Backed Securitization. Journal of the Operational Research Society (ISSN:0160-5682) Vol. 53, p. 822-832.


2000

Kellerer H., Mansini R. , Speranza M.G. (2000). Two Linear Approximation Algorithms for the Subset-Sum Problem. European Journal of Operational Research (ISSN:0377-2217) Vol. 120, p. 289--296.